Aquifer Vulnerability Assessment in Some Towns of Yenagoa, South-South Nigeria

Similar documents
Aquifer Vulnerability Investigation Using Geoelectric Method in Parts of Sapele Local Government Area of Delta State, Nigeria

Application of Resistivity Methods to Groundwater Protection Studies in Niger Delta

Analysis of electrical resistivity data for the determination of aquifer depth at Sapele RD in Benin city

Hydrogeophysical investigation in selected parts of Irepodun/Ifelodun local government area of Ekiti State, Southwestern Nigeria

Accepted 15 December, 2012

VOL. 3, NO. 9, September 2013 ISSN ARPN Journal of Science and Technology All rights reserved.

FORMATION EVALUATION OF SIRP FIELD USING WIRELINE LOGS IN WESTERN DEPOBELT OF NIGER DELTA

RESISTIVITY IMAGING OF CRUDE OIL SPILL IN OGULAHA COASTAL COMMUNITY, BURUTU L.G.A, DELTA STATE, NIGERIA

Scholars Research Library. Predicting the aquifer characteristic within the major towns in Ndokwa land

Geoelectric Evaluation of Groundwater Potential: A Case Study of Sabongida-Ora and Environs, Southern Nigeria

GEOELECTRICAL INVESTIGATION OF GROUNDWATER CONDITION IN OLEH, NIGERIA

1-D Electrical Resistivity Survey For Groundwater In Ketu-Adie Owe, Ogun State, Nigeria.

Geoelectric Investigation for Groundwater Prospects in Ejeme-Aniogor and Environs, Aniocha- South Local Government Area, Delta State, Nigeria

K. S. OKIONGBO AND G. C. SORONNADI-ONONIWU

The Use of Vertical Electrical Sounding (VES) for Subsurface Geophysical Investigation around Bomo Area, Kaduna State, Nigeria

2d Geoelectric Evaluation and Imaging of Aquifer Vulnerability of Dump Site at Ozoro Isoko South Lga of Delta State

Groundwater Exploration In Parts Of Mangu- Halle North-Central Nigeria.

Elijah Adebowale Ayolabi, Ph.D. 1, Adetayo Femi Folorunso, M.Sc. 2*, Ayodele Franklin Eleyinmi, B.Sc. 1, and Esther O. Anuyah, B.Sc.

Aspects of Geophysical Exploration for Groundwater Using Vertical Electrical Sounding (VES) in Parts of University of Benin, Benin City, Edo State

Geophysical Study of Limestone Attributes At Abudu Area of Edo State, Nigeria

Groundwater Assessment in Apapa Coast-Line Area of Lagos Using Electrical Resistivity Method

Ground Magnetic and Electrical Resistivity Mapping for Basement Structurs over Charnokitic Terrain in Ado-Ekiti Area, Southwestern Nigeria

AQUIFER CHARACTERIZATION AND GROUNDWATER POTENTIAL ASSESSMENT OF THE SEDIMENTARY BASIN OF ONDO STATE. Faleye, E. T. and Olorunfemi, M. O.

Scholars Research Library. Geophysical investigation of effects of topographic complexities on groundwater potential in Ibusa, Delta State Nigeria

Underground water exploration of Oleh, Nigeria using the electrical resistivity method

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March ISSN

Studies on environmental impact assessment of wastewater pit in Izombe flow station, South-Eastern Nigeria

RESISTIVITY IMAGING AND BOREHOLE INVESTIGATION OF THE BANTING AREA AQUIFER, SELANGOR, MALAYSIA. A.N. Ibrahim Z.Z.T. Harith M.N.M.

EVALUATION OF AQUIFER PROTECTIVE CAPACITY OF GROUND WATER RESOURCES WITHIN AFE BABALOLA UNIVERSITY, ADO EKITI, SOUTHWESTERN NIGERIA

2D Resistivity Imaging Investigation of Solid Waste Landfill Sites in Ikhueniro Municipality, Ikpoba Okha Local Government Area,Edo State, Nigeria.

Geophysical Investigation of Egbeta, Edo State, Nigeria, Using Electrical Resistivity Survey to Assess the Ground water Potential

DC Resistivity Investigation of Anisotropy and Lateral Effect using Azimuthal Offset Wenner Array. a case Study of the University of Calabar, Nigeria

Determination of Geothermal Gradient in the Eastern Niger Delta Sedimentary Basin from Bottom Hole Temperatures

Geophysical Investigation of Ground Water Using Vertical Electrical Sounding and Seismic Refraction Methods

Vertical Electrical Sounding Survey for Groundwater Exploration in Parts of Anyigba and its Environs, in the Anambra Basin of Nigeria

Hydro-Geophysical Investigation of the Federal Housing Estate Akure, Southwestern Nigeria

Vertical Electrical Sounding (Ves) For The Determination Of Under Ground Resistivity In Part Of Nigeria Wilberforce Island,Amassoma, Bayelsa State

Geophysical Investigation of Foundation Condition of A Site in Ikere- Ekiti, Ekiti State, South-Western Nigeria

Scholars Research Library

S.I. Fadele, M.Sc. 1 ; P.O. Sule, Ph.D. 1 ; and B.B.M. Dewu, Ph.D * ABSTRACT

Morenikeji P. Anjorin, B.Tech. 1 and Martins O. Olorunfemi, Ph.D. 2*

Causes of Borehole Failure in Complex Basement Terrains: ABUAD Case Study, Southwestern Nigeria. w w w. a j e r. o r g Page 192

Applied Physics Research Vol. 3, No. 2; November 2011

Groundwater Potential Evaluation of College of Engineering, Afe Babalola University, Ado-Ekiti, Southwestern Nigeria

Geo-technical Investigation and Characterization of Sub-soils in Yenagoa, Bayelsa State, Central Niger Delta, Nigeria

DETECTION OF GROUNDWATER POLLUTION USING RESISTIVITY IMAGING AT SERI PETALING LANDFILL, MALAYSIA

Nature and Science 2010;8(8)

Effect of multicyclic compaction on cohesion in lateritic soils

Vertical electrical sounding (VES) for subsurface geophysical investigation in Kanigiri area, Prakasam district, Andhra Pradesh, India

International Journal of Scientific & Engineering Research Volume 9, Issue 3, March ISSN

Geophysical Investigation: A Case Study of Basement Complex, Nigeria

Geoelectric Delineation of Hydrocarbon Spill in Abesan Lagos, Nigeria

Scientific Research Journal (SCIRJ), Volume IV, Issue XI, November ISSN

Subsurface Characterization using Electrical Resistivity(Dipole-Dipole) method at Lagos State University (LASU) Foundation School, Badagry

Lithofacies Characterization of Sedimentary Succession from Oligocene to Early Miocene Age in X2 Well, Greater Ughelli Depo Belt, Niger Delta, Nigeria

Scholars Research Library

Land subsidence due to groundwater withdrawal in Hanoi, Vietnam

INTEGRATED GEOPHYSICAL INVESTIGATION OF SEQUENCE OF DEPOSITION OF SEDIMENTARY STRATA IN ABAKALIKI, NIGERIA ABSTRACT

Groundwater potential and aquifer protective capacity of overburden units in Ado-Ekiti, southwestern Nigeria

A Geophysical Investigation for Subsurface Characterization and Structural failure at the Site of a Building, Southwestern Nigeria

Overpressure Prediction In The North-West Niger Delta, Using Porosity Data

Construction Of 2-D Electrical Resistivity Field To Characterize The Subsoil In North-Eastern Part Of Alimosho Area Of Lagos State, Nigeria.

FADELE S.I, JATAU B.S AND PATRICK N.O Nasarawa State University, Keffi, Nigeria

1. Department of Physics University of Port Harcourt, Nigeria.

Index Terms- Apparent Resistivity, Aquifer, Geoelectric Section, Piezometric Surface.

Vertical Electrical Sounding for the Investigation of Clay Deposit in Orerokpe, Delta State

DELINEATION OF FRESH-BRACKISH WATER AND BRACKISH-SALINE WATER INTERFACES USING VES SOUNDINGS IN SHANI, BORNO STATE, NIGERIA

Evaluation of Ground Water Potential Status in Nkanu-West Local Government Area, Enugu State, Nigeria

Geophysical Study of the Sedimentary Cover in Darb El-Arbeen, South Western Desert, Egypt

Electrical Resistivity Prospecting for Groundwater in the South Eastern part of Ilorin Metropolis, Southwestern Nigeria.

Assessment of Ground Water in a Part of Coastal West Bengal using Geo-Electrical Method

Preliminary Evaluation of Some Engineering Geological Properties of Soils in the New Yenagoa Town, Bayelsa State, Central Niger Delta

Ground-Water Exploration in the Worthington Area of Nobles County: Summary of Seismic Data and Recent Test Drilling Results

2D GEOPHYSICAL EVALUATION OF SUB-SOIL CONTAMINATION - A CASE STUDY

Electrical Resistivity Investigation of Solid Waste Dumpsite at Rumuekpolu in Obio Akpor L.G.A., Rivers State, Nigeria

GSJ: Volume 6, Issue 4, April 2018, Online: ISSN

Groundwater Exploration of Lokpaukwu, Abia State Southeastern Nigeria, Using Electrical Resistivity Method

(C) Global Journal of Engineering Science and Research Management

GEOTECHNICAL INVESTIGATION OF THE SUBSURFACE FORMATIONS, USING ELECTRICAL RESISTIVITY METHOD IN NORTHERN PART OF PAIKO TOWN, NIGER STATE, NIGERIA

Geoelectrical Investigations at Three Bridge Sites, North Nyala, Southern Darfour State, West-Sudan

Determination of Incompressibility, Elasticity and the Rigidity of Surface Soils and Shallow Sediments from Seismic Wave Velocities

Site Investigation and Landfill Construction I

MICRO LEVEL GEO-RESISTIVITY SURVEY THROUGH V.E.S. TEST FOR GROUNDWATER FEASIBILITY STUDY AND SELECTION OF BORE WELL SITES IN PIPILI BLOCK OF PURI

Hydro-Geophysical Study of River Niger Floodplain at Jebba-North, Nigeria

SEISMIC REFRACTION PROFILING AND VERTICAL ELECTRICAL SOUNDING FOR GROUND WATER STUDY IN OBIARUKU, DELTA STATE NIGERIA

Electrical Resistivity Survey Forground Water At Eye Zheba Village, Off Bida - Minna Road

Relevance of 2D Electrical Imaging in Subsurface Mapping: Case Study of National Animal Production Research Institute (NAPRI), Zaria.

K. A. Murana, P. Sule, A.L. Ahmed, E.M. Abraham and E.G. Obande. 1. Introduction

Estimating Compaction Characteristics from Fines in A-2 Type Lateritic Soils

TWO DIMENSIONAL ELECTRICAL IMAGING OF THE SUBSURFACE STRUCTURE OF BOMO DAM ZARIA, KADUNA STATE NORTH CENTRAL NIGERIA

Geophysical Investigation of the Precambrian Marble Occurrence in Itobe Area, Central Nigeria

Evaluation of Subsurface Formation of Pabna District, Bangladesh

Connecticut's Aquifers

2-D RESISTIVITY IMAGING SURVEY FOR WATER-SUPPLY TUBE WELLS IN A BASEMENT COMPLEX: A CASE STUDY OF OOU CAMPUS, AGO-IWOYE SW NIGERIA

Hydrogeophysical Mapping of Oke-Badan Estate, Ibadan, SW Nigeria

Delineating The Subsurface Structures Using Electrical Resistivity Sounding In Some Part Of Willeton, Perth, Western Australia

Determination of Thickness of Aquifer with Vertical Electrical Sounding

Evaluation of the Aquifer Characteristics of Some Parts of Orsu, South-Eastern Nigeria.

Investigation of Aquifer Quality in Bonny Island, Eastern Niger Delta, Nigeria using Geophysical and Geochemical Techniques

Petrophysical Charaterization of the Kwale Field Reservoir Sands (OML 60) from Wire-line Logs, Niger Delta, Nigeria. EKINE, A. S.

Transcription:

Science and Technology 2016, 6(1): 15-23 DOI:.5923/j.scit.20160601.03 Aquifer Vulnerability Assessment in Some Towns of Yenagoa, South-South Nigeria Akana T. S. 1,*, George G. C. 2, Oki O. A. 1 1 Department of Geology, Niger Delta University, Nigeria 2 Department of Physics, Niger Delta University, Nigeria Abstract An assessment of aquifer protective capacity was investigated in some towns of Yenagoa. Fifteen (15) Vertical Electrical Soundings (VES) stations were occupied using the Schlumberger electrode configuration. The VES data interpretation involved quantitative modelling and the curve types obtained were HA, KHK, HK, AK, HKQ and KH. The modelled geoelectric parameters (layer resistivity and layer thickness) at each station were used to compute the Dar-zarrouk parameter (i.e. longitudinal conductance L C ). Longitudinal conductance values showed areas with poor (less than 0.1 mho), weak (0.1 mho 0.19 mho), moderate (0.2 mho 0.69 mho) and good protective capacity (0.7 mho 4.9 mho). Results showed that 53.3% of the area had a weak aquifer protective capacity, 33.3% had poor protective capacity and 13.3% had good and moderate aquifer protective capacity. The longitudinal unit conductance indicated that the Southern Yenagoa had good to moderate aquifer protective capacity rating, while the Northern area had poor to weak aquifer protective capacity. Keywords Aquifer Vulnerability, Resistivity, Dar-zarrouk parameters, Yenagoa 1. Introduction The rapid increase in population in Yenagoa owing to urbanization has led to an increased pressure on underground water which is the major water resource in the area. Groundwater quality has been affected by a number of factors such as over abstraction, movement of leachate to the aquifer from dumpsites, leakage of surface and underground storage and septic facilities e.t.c. The importance of potable water supply to human health cannot be over-emphasized, as such; one must take into consideration the quality of the geologic material overlying the aquifer. Henrit (1976) showed that the combination of layer resistivity and thickness can be used to compute the Dar Zarrouk parameters L C (longitudinal conductance) and R T (transverse resistance), which may be of direct use in aquifer protection studies and evaluation of hydrologic properties of aquifers. The protective capacity is considered to be proportional to the longitudinal unit conductance in mhos (Olorunfemi et al., 1998; Oladapo et al., 2004). A detailed geoelectric survey covering parts of Yenagoa was carried out to determine the geoelectric parameters of subsurface layers and their hydrogeological properties for the evaluation of the protective capacity of the aquifer overburden materials in the area. * Corresponding author: ustin_oki@yahoo.com (Akana T. S.) Published online at http://journal.sapub.org/scit Copyright 2016 Scientific & Academic Publishing. All Rights Reserved 2. Physiography and Geology of Study Area The study area is Yenagoa the capital of Bayelsa state. It lies within latitude 04 4N and 05 02N and longitude 006 15E and 006 24E (fig 1) and situated in southern part of the Niger Delta of Nigeria. The city lies within the tropical Equitorial climate with an annual mean rainfall of 3000 mm (Amajor and Ofoegbu, 1988). It is accessible by a good road network and tributaries of the river Nun. The average elevation of the study area is m above sea level. The area under study falls within the Niger Delta which is characterized by nearly flat topography sloping slightly seawards (Etu-Efeotor and Akpokodje, 1990). This area lies in the sedimentary basin of the Niger Delta and is devoid of any outcrop. During the rainy season, the area is flooded while it is dry during the dry season. The geologic sequence of the Niger Delta consists of three main tertiary subsurface lithostratigraphic units which are overlain by various types of quaternary deposits (Short and Stauble, 1965). The base of the unit is the Akata formation; it is comprised mainly of marine shales with some sand beds. The formation ranges in thickness from about 550 m to over 6,000 m. Very little hydrocarbon has been associated with the formation. The Agbada formation is the overlying paralic sequence which consists of interbedded sands and shale with a thickness of 300 m to about 4,500 m, thinning both seawards and towards the Delta margin. The topmost unit is the Benin formation; it is comprised of over 90% sandstone with shale intercalations. It is coarse grained, gravely, locally

16 Akana T. S. et al.: Aquifer Vulnerability Assessment in Some Towns of Yenagoa, South-South Nigeria fine grained, poorly sorted, sub angular to well-rounded and bears lignite streaks and wood fragments (Allen, 1965). The unit is thickest in the central area of the Delta. The contact with the underlying Agbada formation is defined by the base of sandstones which also corresponds to the base of the fresh water bearing strata. Figure 1. Map of Yenagoa LGA showing the location of VES stations

Science and Technology 2016, 6(1): 15-23 17 3. Materials and Method Investigation was done using the Vertical Electrical Sounding method (Schlumberger configuration) with a maximum current electrode (AB) spread of 200m 266m. A total of Fifteen (15) VES stations were occupied (Fig 1). The ABEM terrameter SAS 0 was used for data acquisition. The field procedure was carried out by applying current to the ground through two electrodes (A and B) and then measuring the resultant potential difference (ΔV) between the potential electrodes (M and N). The centre point of the electrode array remained fixed but the spacing of the electrodes was increased so as to obtain information about the stratification of the ground (Koefoed, 1977). The interpretation was computer assisted; some of these soundings were done at the sites of existing boreholes. Lithology and thickness of layers from these boreholes were used to constrain models. The combination of the resistivity and layer thickness was used to compute the Longitudinal conductance of layers (Golam et al., 2014; Oborie and Udom, 2014). High longitudinal conductance indicated relatively high protective capacity. The total longitudinal conductance (S) for each of geoelectric sounding (VES) stations was computed from the relation: S = Σ (hi / ρi) = h1 / ρ1 + h2 / ρ2 +.. + hn / ρn (1) Where S is the Total Longitudinal Conductance, hi is the thickness of the ith Layer and ρi is the resistivity of the ith layer. Using Henriet (1976) classification, the results of longitudinal conductance was used to classify areas into good, moderate, weak and poor protective capacity (Table 1). Table 1. Protective Capacity Rating (Henriet, 1976) Sum of longitudinal conductance (mhos) Overburden protective capacity classification < 0.1 Poor 0.1 0.19 Weak 0.2 0.69 Moderate 0.70 1.0 Good 4. Results and Discussion The geoelectrical curves obtained (fig 2) vary considerably throughout the study area. Data analysis showed that the area under investigation was a four to five layered. Typical forms of the curves obtained are HA, HK, KH, AK, KHK and HKQ (Fig. 2). The top layer thickness and resistivity ranged between 0.42 m - 1.5 m and 15 Ωm 48.8 Ωm respectively and consisted of weathered/dry organic rich peaty clay. The second layer thickness and resistivity ranged between 0.9 m - 15.0 m and 2.4 Ωm 615 Ωm respectively. It consisted mainly of silty clay but on VES s 6, 9 and 11 this layer consisted of medium-coarse grained sands. The third layer was chiefly medium - coarse grained sands with few clay lenses. This layer was observed to be the main water-bearing layer, resistivity ranged between 77 Ωm - 1960 Ωm with an average of 460 Ωm, its thickness ranged between 23.9 m 48.7 m. The fourth layer in this study is mainly the half-space, it had an average resistivity of 3000 Ωm. VES 2 and 13 were five layer cases, they had a thickness that ranged between 32 m 48 m, with resistivity range of 13 Ωm 51 Ωm, typical of a clay/ silty clay formation. The total longitudinal conductance values were used in evaluating the protective capacity/vulnerability of the aquifer. Henriet (1976) suggested that high clay content with a potential to impede fluid movement is generally characterized by low resistivity values, low hydraulic conductivities, and consequently high longitudinal conductance. The protective capacity rating table (Table 2) enables the classification of the study area into poor, weak, moderate and good protective capacity zones. Areas that are classified as poor and weak are indicative of zones of high infiltration rates from precipitation. Such areas are vulnerable to infiltration of leachate and other surface contaminants. In addition to high transmissivity and low protective capacity ratings in most of the VES stations, the aquifers tapped by most of the boreholes drilled in the study area are relatively close to the surface and thus susceptible to contamination over large areas. However, groundwater potential in terms of availability is high in the study area as evident in the high transverse resistance (R T ) and dominantly low longitudinal conductance values of the subsurface formations which are characteristics of productive aquifers. Table 2. Showing Overburden Thickness VES LOCATION OVERBURDEN THICKNESS (m) VES 1 3.3 VES 2 0.8 VES 3 2.2 VES 4 2.8 VES 5 1.5 VES 6 0.8 VES 7 2.7 VES 8 3.3 VES 9 0.9 VES 2.9 VES 11 0.7 VES 12 2.5 VES 13 2.6 VES 14 2.9 VES 15 3.6 Aquifer Longitudinal conductance ranged between 0.0172 mhos to 0.8904 mhos in the study area. The weak protective capacity is observed at VES s 1, 3, 7, 8,, 12, 13 and 14. All other locations showed poor aquifer protective capacity. VES 4

18 Akana T. S. et al.: Aquifer Vulnerability Assessment in Some Towns of Yenagoa, South-South Nigeria and 15 showed moderate and good aquifer protective capacity respectively. The overburden thickness of aquifer ranged from 0.7 m to 3.6 m, (Table 3). Thicknesses showed shallow water bearing formation. It can be correlated to results of areas having poor protective capacity, which is as result of the thin layer of impervious material protecting the aquifer. 0 O -St. P Y E N 1 Electrode Spacing (A B /2) (m ) HA CURVE 0 O -SC HO O L R O A D E T E G W E 1 0 Electrode Spacing (A B /2) (m ) HK-CURVE

Science and Technology 2016, 6(1): 15-23 19 0 O - G R T Y E N E G W E 1 0 Electrode Spacing (A B /2) (m ) AK-CURVE 0 O - K PA N SI A M K T Apparent Resistivity (O hm -m ) 1 0 Electrode Spacing (A B /2) (m ) KH-CURVE

20 Akana T. S. et al.: Aquifer Vulnerability Assessment in Some Towns of Yenagoa, South-South Nigeria 0 O -SA N I A B A C HA R O A D 1 E lectrode Spacing (A B /2) (m ) 0 KHK-CURVE O - L FC A K E N FA 1 0 E lectrode Spacing (A B /2) (m ) HKQ-CURVE Figure 2. showing Predominant VES curves

Science and Technology 2016, 6(1): 15-23 21 Table 3. VES Coordinates Points, Geoelectric Parameters, Lithological Delineation and Protective Capacity VES No and co-ordinate points. VES 1 N04054 13.4 E006016 59.1 VES 2 N04 O 54 38.9 E006 0 17 34.6 VES 3 N04 0 57 26.7 E006 0 21 13.5 VES 4 N04 0 55 33.1 E006 0 16 32.1 VES5 N05 0 01 11.1 E006 0 23 53.4 VES 6 N04 0 59 03.3 E006 0 22 38.6 VES 7 N04 0 56 15.6 E006 0 16 56.9 LOCATION Layers Resistivity (Ωm) Thickness (m) OX-BOW LAKE, SWALI SANI ABACHA ROAD SCHOOL ROAD, ETEGWE St. PATRICK, YENEGOA YENEGWE AGUDAMA AMARATTA Layer 1 44.020 0.6583 Curve Types Lithology Longitudinal conductance Layer 2 21.485 2.6126 Clay 0.1216 HA Layer 3 1960.9 25.850 Sand 0.0132 Layer 4 24366. Layer 1 25.847 0.7817 Protective capacity Top Soil 0.0150 0.1366 Weak Top Soil 0.0302 0.0302 Poor Layer 2 188.41 3.6144 Sandy Clay 0.0192 Layer 3 32.597 14.642 KHK Clay 0.4492 Layer 4 51.186 32.931 Clay 0.6434 Layer 5 31.936 Layer 1 22.568 0.7195 Top Soil 0.0319 0.52 Weak Layer 2 20.541 1.5052 Clay 0.0733 HK Layer 3 475.93 26.918 Clayey Sand 0.0566 Layer 4 87.399 Layer 1 22.326 0.4280 Top Soil 0.0192 0.2140 Moderate Layer 2 12.339 2.4037 Clay 0.1948 HA Layer 3 457.18 21.604 Clayey Sand 0.0473 Layer 4 2255.7 Layer 1 18.389 0.5780 Top Soil 0.0314 0.0787 Poor Layer 2 19.320 0.9139 Clay 0.0473 AK Layer 3 767.87 29.069 Clayey Sand 0.0379 Layer 4 8.9239 Layer 1 25.605 0.7795 Top Soil 0.0304 0.0304 Poor Layer 2 337.33 11.697 Sandy Clay 0.0347 KQ Layer 3 77.001 38.842 Clay 0.5044 Layer 4 14.220 Layer 1 34.457 1.2113 Top Soil 0.0352 0.1628 Weak Layer 2 11.397 1.4549 Clay 0.1277 HK Layer 3 605.27 25.488 Clayey Sand 0.0421 Layer 4 35.092

22 Akana T. S. et al.: Aquifer Vulnerability Assessment in Some Towns of Yenagoa, South-South Nigeria VES No and co-ordinate points. VES 8 N04 0 56 35.7 E006 0 19 29.3 VES 9 N04 0 55 01.3 E006 0 15 04.4 VES N04 0 53 30.6 E006 0 18 48.4 VES 11 N04 0 55 03.8 E006 0 19 03.3 VES 12 VES 13 N05 0 011 11.0 E006 0 23 12.0 VES 14 N04 0 54 08.3 E006 0 15 54.0 VES 15 N04 0 54 42.3 E006 0 18 21.5 LOCATION Layers Resistivity (Ωm) Thickness (m) BIOGBOLO FAMGBE HOUSE OF ASSEMBLY KPANSIA LAW FACULTY AKENFA OGU OKAKA Layer 1 23.487 0.7307 Curve Types Lithology Longitudinal conductance Layer 2 23.904 2.5559 Clay 0.69 AK Layer 3 736.93 31.217 Clayey Sand 0.0424 Layer 4 16.615 Layer 1 48.855 0.8762 Protective capacity Top Soil 0.0311 0.1380 Weak Top Soil 0.0179 0.0179 Poor Layer 2 359.97 19.854 Clayey Sand 0.0552 KH Layer 3 88.364 32.946 Clay 0.3728 Layer 4 2494.2 Layer 1 15.195 1.0444 Top Soil 0.0687 0.47 Weak Layer 2 52.224 1.8776 Clay 0.0360 AA Layer 3 198.36 48.700 Sandy Clay 0.2455 Layer 4 3336.0 Layer 1 41.879 0.7234 Top Soil 0.0173 0.0173 Poor Layer 2 615.75 9.4800 Clayey Sand 0.0154 KH Layer 3 81.549 29.995 Clay 0.3678 Layer 4 11334. Layer 1 36.735 0.6125 Top Soil 0.0167 0.1651 Weak Layer 2 12.647 1.8775 Clay 0.1485 HK Layer 3 207.44 23.922 Sandy Clay 0.1153 Layer 4 7.0535 Layer 1 17.405 0.5043 Top Soil 0.0290 0.1601 Weak Layer 2 15.888 2.0837 Clay 0.1311 Layer 3 535.75 25.027 HKQ Clayey Sand 0.0467 Layer 4 13.163 48.564 Clay 3.6894 Layer 5 7.0261 Layer 1 23.587 0.4617 Top Soil 0.0196 0.1651 Weak Layer 2 16.432 2.3906 Clay 0.1455 HK Layer 3 195.55 48.275 Sandy Clay 0.2469 Layer 4 123.96 Layer 1 40.727 1.5726 Top Soil 0.0386 0.8904 Good Layer 2 2.4354 2.0745 Clay 0.8518 HA Layer 3 489.60 32.849 Clayey Sand 0.0671 Layer 4 3992.9

Science and Technology 2016, 6(1): 15-23 23 5. Conclusions About 53.3% of the area showed weak aquifer protective capacity, 33.3% had poor protective capacity and 13.3% possessed moderate to good aquifer protective capacity. Geoelectric investigation by the analysis of the longitudinal unit conductance suggested that sections of the aquifer underlying the Northern parts of the area studied had poor to weak protective capacity, while, good to moderate protective capacity was observed in the Southern parts of the study area. It is thus recommended that sanitary landfill sites, underground storage and septic facilities be sited on the Southern parts of Yenagoa with better aquifer protective capacity, taking the direction of underground water flow into consideration. REFERENCES [1] Allen, J.R.L. (1965). Late Quaternary Niger Delta and adjacent areas: sedimentary environments and lithofacies. American Association of Petroleum Geology Bullettin,49: pp. 549-600. [2] Amajor, L. C. and Ofoegbu, C. O. (1988) Determination of Polluted Aquifers by Stratigraphically Controlled Biochemical Mapping: Example from the Eastern Niger Delta, Nigeria, In: C. O. Ofoegbu, Ed., Groundwater and Mineral Resources of Nigeria, F. Vieweg, Braunschweig/Wiesbaden, 1988, pp. 62-73. [3] Bose, K. N., Chatterjee, D and Sen A. K (1973). Electrical resistivity surveys for groundwater in the Aurangabad Sub-division, Gaya District, Bihar, Indian pp. 171-181. [4] Etu- Efeotor, J.O and Akpokodje, G.E (1990). Aquifer systems of the Niger Delta. Journal of Mining and Geology, Vol.2 (2), pp. 264-266. [5] Golam, S. S, Keramat M, Shahid M. Deciphering transmissivity and hydraulic conductivity of the aquifer by vertical electrical sounding (VES) experiments in Northwest Bangladesh, Appl Water Sci, 2014. [6] Henriet, J.P. (1976). Direct applications of the Dar Zarrouk parameters in ground water surveys. Geophysical Prospecting, 24. Pp. 345-353. [7] Koefoed, O. (1977). Geosounding principles: Resistivity sounding measurements. Elsevier Scientific Publishing Company, 1979. [8] Oborie, E. L and Udom G. J. Determination of aquifer transmissivity using geoelectrical sounding and pumping test in parts of Bayelsa State, Nigeria. Peak Journal of Physical and Environmental Science Research 2014. [9] Oladapo, M.I, Mohammed M.Z, Adeoye O.O and Adetola, B.A (2004) Geoelectrical investigation of The Ondo State Housing Corporation Estate, Ijapo Akure, Southwestern Nigeria. J Min Geol Vol. 40(1), pp. 41 48. [] Oladimeji, L. A and Oluwaseun, S. O (2013) Evaluation of aquifer protective capacity of ground water resources within Afe-Babalola University, Ado-Ekiti, southwestern Nigeria: Transnational Journal of Science and Technology June edition Vol. 3(6), pp. [11] Olorunfemi, M. O, Ojo, J.S and Oladapo. M. I (1998) Geological, hydrogeological and geophysical Investigation of exposed 20 Escravos Lagos Pipeline. Technical report. [12] Short, K. C and Stauble, A. J. (1967), Outline of Geology of Niger delta: American Association of Petroleum Geologists Bulletin, Vol. 51, pp. 761-779.