Method Development for Chiral LC/MS/MS Analysis of Acidic Stereoisomeric Pharmaceutical Compounds with Polysaccharide-based Stationary Phases

Similar documents
APPLICATIONS TN Lux Cellulose-2 or -4 Cellulose tris (3-chloro-4-methylphenylcarbamate) or (4-chloro-3-methylphenylcarbamate)

APPLICATIONS TN HPLC Conditions. Lux Cellulose-1 Cellulose tris(3,5-dimethylphenylcarbamate)

Application Note. Authors. Abstract. Pharmaceuticals

770-9P. Sensitivity and Selectivity - A Case Study of LC/MS Enantioselective Resolution of Bupivacaine Using Vancomycin as a Chiral Stationary Phase

LC-MS compatible Separation of the Fungicide Spiroxamine

ChromegaChiral TM CSP Media and Columns

APPLICATIONS TN Peptide Purification Method Development: Application for the Purification of Bivalirudin. Introduction

Chiral Method Development in LC/MS Using Macrocyclic Glycopeptide CSPs

ChromegaChiral TM CSP Media and Columns

Journal of Chromatography A

Practicing Chiral Chromatography in Your Mobile Phase Comfort Zone

Multi-Channel SFC System for Fast Chiral Method Development and Optimization

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Analysis of Positional Isomers of Lapatinib with Agilent Poroshell 120 PFP Columns

Chiral Separation Using SFC and HPLC

Thermo Scientific Accucore XL HPLC Columns. Technical Manual

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Quantitative Analysis and Identification of Migrants in Food Packaging Using LC-MS/MS

High Performance Liquid Chromatography. Table 1: Allowed HPLC Adjustment of USP <621> and EP <2.2.46>

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS

Confirmation of In Vitro Nefazodone Metabolites using the Superior Fragmentation of the QTRAP 5500 LC/MS/MS System

Optical Isomer Separation Columns and Packing Materials

Agilent 1290 Infinity Quaternary LC Stepwise Transfer to Methods with MS-Compatible Mobile Phases

ChromegaChiral TM Columns. The right choice for chiral purification

APPLICATIONS TN Increased Capabilities for the Analysis of Hormones in Drinking and Waste Water Using Solid Phase Extraction (SPE) and LC/MS/MS

penta-hilic UHPLC COLUMNS

Reversed Phase Solvents

The Secrets of Rapid HPLC Method Development. Choosing Columns for Rapid Method Development and Short Analysis Times

The Use of the ACQUITY QDa Detector for a Selective, Sensitive, and Robust Quantitative Method for a Potential Genotoxic Impurity

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

CHAPTER 1 Role of Bioanalytical Methods in Drug Discovery and Development

Analysis - HPLC A.136. Primesep 5 µm columns B.136

penta-hilic UHPLC COLUMNS

Determination of Pharmaceuticals in Water by SPE and LC/MS/MS in Both Positive and Negative Ion Modes Application

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Novel LC/MS-Compatible Stationary Phase with Polar Selectivity

Part 2. Overview of HPLC Media

Luna 2.5 µm C18(2)-HST. Advantages of 2.5 µm for increasing the speed of analysis while maintaining high efficiency

Fast Screening Methods for Analgesics and Non-Steroidal Anti-Inflammatory Drugs by HPLC

The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System

Separation of Enantiomers of Amphetamine-Related Drugs and Their Structural Isomers

Enantiomer Separation of Chiral Acids on CHIRALPAK AX-QN and CHIRALPAK AX QD

A New Polymer-based SPE Sorbent to Reduce Matrix Effects in Bioanalytical LC-MS/MS

Overview. Introduction. André Schreiber AB SCIEX Concord, Ontario (Canada)

Chiral separations efficient, fast and productive

LC Technical Information

Separation of Chiral Pesticides by SFC and HPLC

The Theory of HPLC. Ion Pair Chromatography

Routine MS Detection for USP Chromatographic Methods

Overview. Introduction. NMR hyphenation modes HPLC-SPE-NMR. Advantages and limitations. Examples

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

Application Note. Author. Abstract. Pharmaceutical QA/QC. Siji Joseph Agilent Technologies, Inc. Bangalore, India

Developing a fast, generic method for rapid resolution LC with quadrupole MS detection. Application Note

Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX

Capacity vs Throughput on Modified Macrocylics in Reversed Phase, Polar Ionic Mode and Normal Phase

Quantitative analysis of small molecules in biological samples. Jeevan Prasain, Ph.D. Department of Pharmacology & Toxicology, UAB.

Comprehensive 2D-LC Analysis of Chinese Herbal Medicine

Nexera UC Unified Chromatography

Analyst Software. Automatic Optimization Tutorial

Put the. C18 aside. and take a look... Reasons. to try the. NEW Gemini C6-Phenyl

High Speed 2D-HPLC Through the Use of Ultra-Fast High Temperature HPLC as the Second Dimension

Chemical derivatization

Shodex TM ODP2 HP series columns

Zirconia-Based Phases as a Powerful Complement to Silica-Based Phases for LC and LC-MS under Non-extreme Mobile Phase Conditions

columns Acclaim Mixed-Mode WCX-1 for Separating Basic Molecules

Separation of Structurally Similar Steroids on HALO C18 and PFP

Multi-mode Separations Using Zirconiabased Stationary Phases

Zirconia: the Ideal Substrate for Ion-Exchange LC and LC-MS

Chiral Separation and Discrimination in High- Performance Liquid Chromatographic Systems

Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System

Determination of Pharmaceuticals in Water by SPE and LC/MS/MS in Both Positive and Negative Ion Modes

Analysis of Synthetic Cannabinoids and Metabolites: Adding New Compounds to an Existing LC-MS/MS Method

+ butanal + 2-picolineborane. + acetic acid. + butanal + 2-picolineborane. + acetic acid

Determination of Pharmaceuticals in Environmental Samples

New 3-Micron Polysaccharide-based Chiral Columns for Fast HPLC and SFC Geoffrey B. Cox, Norbert M. Maier Chiral Technologies, Inc

Agilent 1200 Infinity Series HDR DAD Impurity Analyzer System for the Quantification of Trace Level of Genotoxic Impurity

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS

High-Resolution Sampling 2D-LC for Pharmaceutical Impurity Analysis

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Streamlining the Analysis of Oral Contraceptives Using the ACQUITY UPLC H-Class System

C18 Column. Care & Use Sheet

Frank Steiner, Michael Heidorn, and Markus M. Martin Thermo Fisher Scientific, Germering, Germany

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry

STUDY OF LOADABILITY AND SELECTIVITY OF PHARMACEUTICAL COMPOUNDS ON RPLC COLUMNS

Analysis of Propofol (2,6-Diisopropylphenol) and its Metabolites in One Injection using the DuoSpray Ion Source

Certificate of Analysis

Supporting Information

KEY WORDS: enantioseparation; chiral pesticide; chiral stationary phase; amylose; HPLC; elution order

Improved Extraction of THC and its Metabolites from Oral Fluid Using Oasis PRiME HLB Solid Phase Extraction (SPE) and a UPLC CORTECS C 18

Astec CHIROBIOTIC. Macrocyclic Glycopeptide-Based Chiral HPLC Phases

Extraction of Aflatoxins and Ochratoxin from Dried Chili Using ISOLUTE. Myco Prior to LC-MS/MS Analysis

Improved Automated Sample Preparation for the Analysis of 25-OH-Vitamin D3 by LC/MS/MS

ACD/AutoChrom Assisted Method Development for Challenging Separations. Vera Leshchinskaya February 7, 2018

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

It s hot! ZIC -chilic

Fast Protein and Peptide Separations Using Monolithic Nanocolumns and Capillary Columns

Hydrophilic Interaction Liquid Chromatography: Some Aspects of Solvent and Column Selectivity

LC-MS/MS Method for the Determination of Diclofenac in Human Plasma

Analysis of Beer by Comprehensive 2D-LC with the Agilent 1290 Infinity 2D-LC system

(HILIC) Bill Champion Agilent Technologies, Inc opt 3/opt3/opt 2 HILIC - Agilent Restricted

Transcription:

Method Development for Chiral LC/MS/MS Analysis of Acidic Stereoisomeric Pharmaceutical Compounds with Polysaccharide-based Stationary Phases Liming Peng, Swapna Jayapalan, and Tivadar Farkas Phenomenex, Inc, 411 Madrid Ave, Torrance, CA 951 USA P8782611_L_1

Introduction Developing simple and straightforward reversed phase (RP) chiral LC separations coupled with highly sensitive MS detection is required for conducting drug metabolism and pharmacokinetic studies of stereoisomers and a challenging part of the drug discovery process We have presented our successful results on using polysaccharide-based stationary phases coupled with API-MS/MS detection for the analysis of various basic and neutral pharmaceutical compounds in reversed phase elution using NH4HC3 or NH4Ac as buffer salts and acetonitrile or methanol as organic modifiers 1 This investigation is extended to the effectiveness of using an acidic mobile phase for the separation and detection of acidic stereoisomers by ESI or APCI LC/MS/MS and to method development of Chiral LC/MS/MS analysis using polysaccharide-based chiral stationary phase (CSPs)

Figure 1 Structures of Chiral Phases Lux Cellulose-2 or-4 Cellulose tris (3-chloro-4-methylphenylcarbamate) or (4-chloro-3-methylphenylcarbamate) Cl Lux Amylose-2 Amylose tris (5-chloro-2-methylphenylcarbamate) Cl CNH CNH Cl Cl HNC CNH Cl HNC CNH Cl Lux Cellulose-1 Cellulose tris (3,5-dimethylphenylcarbamate) Lux Cellulose-3 Cellulose tris (4-methylbenzoate) CNH C Me HNC CNH Me C C Me

Figure 2 Molecular Structures of Acidic Racemates H S H Cl H F N H N H H H Ibuprofen Flurbiprofen Suprofen Fenoprofen Carprofen Indoprofen H NH N H H H N S N H B H C Proglumide H N Etodolac H Abscisic Acid H H N N H S Cl H Mecoprop Ketorolac 1-(Phenylsulfonyl)-3- indoleboronic acid Cl H N Cl CF 3 Cl N H S S S NH 2 NH 2 Warfarin Bendroflumethiaze Trichlormethiazide

Table 1 MRM Transitions and Concentrations of Acidic Racemates Compound IS and MRM Conc* Compounds IS and MRM Conc* Ibuprofen ESI - 251/161 1 Abscisic acid APCI - 263/1527 5 Flurbiprofen ESI - 243/1987 5 Mecoprop ESI - 2141/1417 5 Suprofen ESI + 2611/111 5 Ketorolac ESI - 254/298 5 ESI + 2562/15 Fenoprofen APCI - 241/1968 1 Etodolac ESI - 2861/242 5 Carprofen APCI - 2728/2288 1 Warfarin ESI - 371/169 5 ESI + 392/1631 Indoprofen ESI + 2821/2361 5 Bendroflumethiaze ESI - 421/779 5 Proglumide ESI - 3331/129 5 Trichlormethiazide ESI - 3778/2416 5 1-(Phenylsulfonyl)- 3-indoleboronic acid ESI - 3/298 1 * Conc (ng/ml)

Experimental Conditions Instrumentation HPLC System: Agilent 12 series Pump: G1312B (Binary Pump) Autosampler: G1337C HP-ALS-SL MS Detector: AB SCIEX API 4 LC/MS/MS -Turbo V Source with ESI or APCI probe MS Detection TurbolonSpray ESI or APCI in Positive or Negative Ion Mode; MRM transition HPLC Conditions Flow Rate: 2 ml/min (3 µm, 15 x 2 mm) or 1 ml/min (5 µm, 25 x 46 mm), flow split to 25 ml/min into MS/MS Injection Volume: 5 µl (15 x 2 mm) or 2 µl (25 x 46 mm) Columns: Lux Cellulose-1 3 µm 15 x 2 mm Lux Cellulose-2 3 µm 15 x 2 mm Lux Amylose-2 3 µm 15 x 2 mm Lux Cellulose-4 5 µm 25 x 46 mm Lux Cellulose-3 5 µm 25 x 46 mm Kinetex 26 µm C18 5 x 21 mm (used for achiral analysis) Mobile Phases: 1 Acetonitrile/Methanol: 1 % Formic acid (FA) 2 Acetonitrile/Methanol: 5 mm NH 4HC 3 achiral analysis 3 Acetonitrile/Methanol: 5 mm HCNH 4 (NH 4FA) achiral analysis 4 Acetonitrile/Methanol: 5 mm CNH 4(NH 4AC)- achiral analysis

Figure 3 LC/MS/MS Responses of Acidic Racemates in ESI - with Different Additives and Methanol 15 1 % FA:MeH 5 mm NH4FA:MeH 5 mm NH4HC3:MeH 5 mm NH4HC3:MeH 125 1 1 % FA:MeH 5 mm NH4FA:MeH 5 mm NH4HC3:MeH 5 mm NH4HC3:MeH 75 5 25 Warfarin Etodolac Ibuprofen Fenoprofen Flurbiprofen Proglumide Bendroflumethiaze 1-(PS)-3-indoleboronic Ketorolac Mecoprop Carprofen

Figure 4 LC/MS/MS Responses of Acidic Racemates in ESI- with Different Additives and Acetonitrile 5 mm NH 4 HC 3 : CN 5 mm NH 4 FA: CN 1 % FA: CN 5 mm NH 4 AC: CN 5 mm NH 4 HC 3 : CN 5 mm NH 4 FA: CN 1 % FA: CN 5 mm NH 4 AC: CN

Figure 5 The Effect of Acidic Additives on the Enantioseparation of Acidic Racemates in RP Bendroflumethiaze Lux 5 µm Cellulose-1 25 x 46 mm Flurbiprofen (pk a 433 ) Lux 5 µm Amylose-2 25 x 46 mm mau 4 DAD1D, Sig=22,8 Ref=off (F:\PHEN4157\HPCHEM\1\DATA\LP59\LP557D) 14642 15595 VWD1A, Wavelength=22nm(F:\PHEN4228\HPCHEM\1\DATA\LP31\LP3-22-121-2\LP3-22-121-3-222-12-32\LP-3- mau 35 947 3 161 3 2 1 A CN / 1 % HAc (4:6) Rs: 164 25 2 15 1 5 D CN / 1 % HAc (6:4) Rs: 272 mau 6 5 4 3 2 2 4 6 8 1 12 14 16 18 DAD1D, Sig=22,8 Ref=off (F:\PHEN4157\HPCHEM\1\DATA\LP59\LP554D) B Rs: 165 14915 15889 mi mau 6 5 4 3 2 2 4 6 8 1 12 14 VWD1A, Wavelength=22nm(LP31\LP3-22-1-221-3-231-52-16\LP-3-22-1-15D) 495 594 E CN / 1 % FA (6:4) Rs: 469 min 1 1 3256 mau 3 25 2 15 1 5 2 4 6 8 1 12 14 16 18 DAD1D, Sig=22,8 Ref=off (F:\PHEN4157\HPCHEM\1\DATA\LP59\LP5511D) C CN / 1 % TFA (4:6) Rs: 164 14954 15932 min 2 4 6 8 1 12 14 VWD1A, Wavelength=22nm(LP31\LP3-22-1-321-3-2311-47-19\LP-3-22-1-16D) mau 7 4628 6 5 4 3 2 1 F CN / 1 % TFA (6:4) Rs: 494 5581 min 2 4 6 8 1 12 14 16 18 min 2 4 6 8 1 12 14 min Conc: 25 µg/ml; Flow Rate: 1 ml/min; Injection: 1 µl; Detection: UV @ 22 nm HAc Acetic Acid TFA Trifluoroacetic Acid

Figure 6 The Effect of rganic Modifier on the Enantioseparation of Acidic Racemates in RP Proglumide Lux 3 µm Cellulose-1 15 x 2 mm Ibuprofen Lux 5 µm Cellulose-3 25 x 46 mm X I C o f -M R M (1 2 p a i rs ): 3 3 3 5 2 /1 2 9 D a fr o m S a m M a x 1 1 e 5 cp s X IC o f -M R M (1 2 p a ir s ) : 2 5 1 4 1 /1 6 9 D a fr o m S a m M a x 2 4 e 4 c p s 1 1 5 e 5 1 e 5 2 4 2 CN / 1 % FA (6:4) 2 e 4 CN / 1 % FA (6:4) 8 e 4 1 5 e 4 6 e 4 4 e 4 1 e 4 2 e 4 5 2 4 6 8 1 i X I C o f -M R M (1 2 p a i rs ): 3 3 3 5 2 /1 2 9 D a fr o m S a m M a x 3 6 e 4 cp s 2 4 6 8 1 1 2 1 4 X IC o f -M R M (1 2 p a ir s ) : 2 5 1 4 1 /1 6 9 D a fr o m S a M a x 6 3 5 9 c p s 3 6 e 4 3 e 4 6 5 CN / 1 % FA (5:5) 9 2 e 4 4 3 1 e 4 2 2 4 6 8 1 i X I C o f -M R M (1 2 p a i rs ): 3 3 3 5 2 /1 2 9 D a fr o m S a m M a x 1 6 e 4 cp s 1 2 4 6 8 1 1 2 1 4 1 a fr o m S a 1 7 1 X IC o f -M R M (1 2 p a ir s ) : 2 5 4 1 /1 6 9 D M a x 4 2 c p s 1 5 e 4 7 2 1 4 CN / 1 % FA (3:7) 2 8 4 1 e 4 3 5 2 1 2 4 6 8 1 FA Formic Acid 2 4 6 8 1 1 2 1 4 1 6 1 8 2 2 2 2 4 s

Figure 7 Enantioseparations on Lux Cellulose-2 with Acetonitrile or Methanol as Modifier X I C o f -M R M (6 p a i rs ): 3 3 3 5 2 /1 2 9 D a fro m S M a x 2 3 e 4 c p s X IC o f -M R M (1 2 p a ir s ): 3 3 3 5 2 /1 2 9 D a f ro m M a x 1 4 e 4 cp s 2 e 4 Proglumide 1 4 e 4 1 e 4 2 Proglumide Methanol / 1 % FA (7:3) n 2 4 6 8 t 1 1 2 e X I C o f -M R M (6 p a i rs ): 2 5 3 9 4 7 /2 9 8 D a fro m n M a x 5 7 8 5 9 c p s 2 4 6 8 1 1 2 1 4 X IC o f -M R M (1 2 p a ir s ): 2 5 3 9 4 7 /2 9 8 D a f ro m M a x 1 2 e 4 cp s 5 7 8 6 4 2 Ketorolac I 1 2 4 e 4 1 e 4 Ketorolac Methanol / 1 % Formic Acid (7:3) 2 4 6 8 1 1 2 X I C o f -M R M (6 p a i rs ): 4 2 4 8 /7 7 9 D a f ro m S a p M a x 1 3 e 4 c p s 2 4 6 8 1 1 2 1 4 X IC o f -M R M (1 2 p a ir s ): 4 2 4 8 /7 7 9 D a f ro m M a x 3 4 5 cp s 1 e 4 5 Bendroflumethiaze CH3CN / 1 % FA (4:6) 6 8 4 3 4 5 3 1 4 Bendroflumethiaze Methanol / 1 % FA (7:3) 2 4 6 8 1 1 2 p X I C o f -M R M (6 p a i rs ): 2 9 9 9 9 4 /2 9 8 D a fro m M a x 1 3 9 6 8 c p s 2 4 6 8 1 1 2 1 4 2 9 8 D a f ro m X IC o f -M R M (1 p a ir s ): 2 9 9 9 4 /2 9 M a x 2 2 1 cp s 1 3 9 7 1 5 1-(Phenylsulfonyl)-3-indoleboronic acid t 2 1 5 1-(Phenylsulfonyl)-3-indoleboronic acid Methanol / 1 % FA (7:3) 2 4 6 8 1 1 2 X I C o f -M R M (6 p a i rs ): 2 8 6 1 1 /2 4 2 D a fro m S p M a x 9 2 e 4 c p s 2 4 6 8 1 1 2 1 4 X IC o f -M R M (1 2 p a ir s ): 2 8 6 1 1 /2 4 2 D a f ro m M a x 1 7 e 5 cp s 9 2 e 4 5 e 4 Etodolac 1 5 e 5 1 e 5 Etodolac Methanol / 1 % FA (7:3) FA Formic Acid 2 4 6 8 1 1 2 2 4 6 8 1 1 2 1 4, c p

Figure 8 Enantioseparations in RP on Lux Cellulose-1 with Acetonitrile X I C o f -M R M (5 p a i rs ): 2 8 6 1 1 /2 4 2 D a fro m S a m M a x 3 e 5 c p s X IC o f -M R M (5 p a i rs ) : 3 3 3 5 2 /1 2 9 D a fr o m S a m M a x 2 8 e 4 cp s 3 e 5 2 e 5 Etodolac CN / 1 % FA (6:4) 2 8 e 4 2 e 4 Proglumide 1 e 5 1 e 4 2 4 6 8 1 T i m e, m in X I C o f -M R M (5 p a i rs ): 3 7 1 3 4 /1 6 9 D a fro m S a m s M a x 1 4 e 5 c p s 2 4 6 8 1 T im e, m in X IC o f -M R M (2 p a i rs ) : 2 7 2 7 6 1 /2 2 8 8 D a fr o m S a M a x 8 3 6 3 8 cp s 1 4 e 5 1 e 5 Warfarin CN / 1 % FA (6:4) 8 3 6 4 5 Carprofen APCI - CN / 1 % FA (6:4) 5 e 4 s 2 4 6 1 T i m e, m in X I C o f -M R M (2 p a i rs ): 3 7 7 7 7 4 /2 4 1 6 D a fro m S a m s M a x 1 5 e 5 c p s 2 4 6 8 1 T im e, m in X IC o f -M R M (5 p a i rs ) : 4 2 4 8 /7 7 9 D a fr o m S a m p M a x 1 1 e 4 cp s 1 5 e 5 1 e 5 Trichlormethiazide CN / 1 % FA (3:7) 1 e 4 Bendroflumethiaze 5 e 4 5 2 4 6 1 T i m e, m in X I C o f -M R M (1 2 p a i rs ): 2 9 9 9 9 4 /2 9 8 D a fr o m S s M a x 1 8 8 2 cp s 2 4 6 8 1 1 2 T im e, m in p a 4 D a fr o m S 4 3 X IC o f -M R M (1 2 i rs ) : 2 5 3 9 7 /2 9 8 M a x 9 9 5 cp s 1 5 1-(Phenylsulfonyl)-3-indoleboronic acid CN / 1 % FA (3:7) 4 3 2 Ketorolac CN / 1 % FA (3:7) 1 5 1 1 5 2 5 1 1 5 2 T i m e, m in T im e, m in FA Formic Acid c p s

Figure 9 Enantioseparations in RP on Lux Cellulose-4 with Acetonitrile X I C o f -M R M (6 p a i rs ): 2 8 6 1 1 /2 4 2 D a fro m S a m p l M a x 1 3 e 6 cp s X IC o f -M R M (6 p a ir s ) : 3 7 1 3 4 /1 6 9 D a fr o m S a m p l M a x 1 8 e 5 c p s 1 3 e 6 1 e 6 Etodolac CN / 1% FA (5:5) 1 1 5 e 5 1 e 5 Warfarin CN / 1 % FA (6:4) 5 e 5 5 e 4 t 2 4 6 8 1 fro m S a m X I C o f -M R M (6 p a i rs ): 2 9 9 9 9 4 /2 9 8 D a M a x 1 5 7 7 1 cp s 2 4 6 8 1 X IC o f -M R M (6 p a ir s ) : 2 5 3 9 4 7 /2 9 8 D a fr o m S a m M a x 4 5 5 6 1 c p s 1 5 1 1-(Phenylsulfonyl)-3-indoleboronic acid 4 Ketorolac 5 2 t 2 4 6 8 1 1 2 1 4 p a fro m S a m s 7 e X I C o f -M R M (6 i rs ): 3 3 3 5 2 /1 2 9 D a p l M a x 2 4 cp s 2 4 6 8 1 1 2 1 4 p 7 7 fr o m S a m 9 3 X IC o f -M R M (2 a ir s ) : 3 7 7 4 /2 4 1 6 D a p l M a x e 4 c p s 2 7 e 4 2 e 4 Proglumide 8 9 3 e 4 5 e 4 Trichlormethiazide CN / 1 % FA (3:7) 1 e 4 2 4 6 8 1 X I C o f -M R M ( 6 p a i rs ): 4 2 4 8 /7 7 9 D a fro m S a m p le M a x 1 2 e 4 cp s 2 4 6 8 1 1 2 1 4 p 4 D fr o m S a m 1 5 X IC o f -M R M (6 a ir s ) : 4 2 8 /7 7 9 a p l e M a x e 4 c p s 1 e 4 Bendroflumethiaze CN / 1 % FA (5:5) 1 5 e 4 1 e 4 7 Bendroflumethiaze CH3CN / 1 % FA (8:2) 5 5 2 4 6 8 1 2 4 6 8 1

Figure 1 Enantioseparations in RP on Lux Amylose-2 with Acetonitrile X I C o f -M R M ( 4 p a i rs ): 2 5 3 9 4 7 /2 9 8 D a fro m S a m p l M a x 2 4 e 4 cp s X IC o f + M R M (5 p a i rs ) : 2 5 6 1 8 9 /1 5 D a fr o m S a m p l M a x 2 2 e 5 c p s 2 e 4 1 5 e 4 Ketorolac 25395/298 (ESI - ) CN / 1 % FA (6:4) 4 1 9 2 e 5 1 5 e 5 Ketorolac 25619/15 (ESI + ) CN / 1 % FA (6:4) 4 1 9 1 e 4 1 e 5 5 5 e 4 1 2 3 4 5 6 7 8 X I C o f -M R M ( 4 p a i rs ): 3 7 1 3 4 /1 6 9 D a fro m S a m p l M a x 3 7 e 4 cp s 1 2 3 4 5 6 7 8 (5 p 9 1 1 a fr o m S a m M a x c p s X IC o f + M R M a i rs ) : 3 7 8 /1 6 3 D p l 7 e 4 3 7 e 4 3 e 4 2 e 4 Warfarin 3713/169 (ESI - ) CN / 1 % FA (6:4) 7 e 4 6 e 4 4 e 4 Warfarin 3918/1631 (ESI + ) CN / 1 % FA (6:4) 1 e 4 2 e 4 n 1 2 3 4 5 6 7 8 X I C o f + M R M ( 5 p a ir s ) : 2 6 1 1 2 /1 1 1 D a f ro m S a m p a x 1 3 e 5 cp s 1 2 3 4 5 6 7 8 X IC o f -M R M (4 p a ir s) : 2 4 2 9 5 4 /1 9 8 7 D a fr o m S a m p l M a x 3 5 e 4 c p s 1 2 7 e 5 1 e 5 Suprofen 26112/111 (ESI + ) CN / 1 % FA (6:4) 3 5 e 4 3 e 4 2 5 e 4 2 e 4 Flurbiprofen 24295/1987 (ESI - ) CN / 1 % FA (6:4) 5 e 4 1 5 e 4 1 e 4 1 2 3 4 5 6 7 8 5 1 2 3 4 5 6 7 8

Figure 11 Enantioseparations in RP on Lux Cellulose-3 with Acetonitrile Modifier X I C o f -M R M (9 p a i rs ): 2 1 4 1 2 /1 4 1 7 D a fro m S a m M a x 6 8 e 4 c p s X IC o f -M R M (9 p a i rs ) : 2 4 9 7 3 /1 9 6 8 D a fr o m S a m M a x 1 6 e 5 cp s 6 8 e 4 5 e 4 Mecoprop 2 4 6 8 1 1 2 1 4 1 6 T i m e, m in X I C o f + M R M (5 p a ir s ) : 2 6 1 1 2 /1 1 1 D a f ro m S a M a x 1 1 e 5 c p s 1 6 e 5 1 e 5 Flurbiprofen 5 1 1 5 2 2 5 T i m e, m in X IC o f -M R M (9 p a i rs ) : 2 5 3 9 4 7 /2 9 8 D a fr o m S a M a x 3 8 2 9 cp s 1 e 5 Suprofen (ESI + ) 3 8 3 Ketorolac 2 4 6 8 1 1 2 T i m e, m in i rs /2 4 a fro m S a c p X I C o f -M R M (9 p a ): 2 8 6 1 1 2 D m M a x 9 3 e 5 s 2 4 6 8 1 1 2 T im e, m in pairs 94/236 D a from S cps XIC of +M R M (2 ): 28 2 1 a M ax 5 9 e4 9 3 e 5 5 e 5 Etodolac 5 e 4 Indoprofen CN / 1 % FA (8:2) 2 4 6 8 1 1 2 T i m e, m in a /1 D a fr o m S c p X I C o f -M R M (1 2 p i rs ): 2 5 1 4 1 6 9 a M a x 3 9 e 4 s 5 1 1 5 T im e, m in D a fr o m S M X IC o f -M R M (1 2 p a i rs ) : 3 3 3 5 2 /1 2 9 a a x 3 1 e 4 cp s 3 9 e 4 Ibuprofen CN / 1 % FA (95:5) 3 1 e 4 Proglumide CN / 1 % FA (8:2) 2 4 6 8 1 1 2 T i m e, m in pairs 4973/929 from S am M cps XIC o f -M R M (2 ): 2 D a ax 6957 2 4 6 8 1 T im e, m in X IC o f -M R M (3 p a i rs ) : 2 6 2 9 6 8 /1 5 2 7 D a fr o m S a m M a x 2 4 e 4 cp s 6 9 6 5 Fenoprofen (APCI - ) 2 e 4 Abscisic acid (APCI - ) CN / 1 % FA (6:4) 5 1 1 5 2 2 5 2 4 6 8 1 1 2 1 4 T im e, m in T im e, m in, c p s

Results and Discussion Chiral LC/MS/MS experiments Five different polysaccharide-based chiral stationary phases Lux Cellulose-1, Lux Cellulose-2, Lux Cellulose-3, Lux Cellulose-4, and Lux Amylose-2 (Figure 1) were explored in the reversed phase elution mode for the separation of a variety of acidic compounds of pharmaceutical interest in mobile phases made of 1 % formic acid (FA) with acetonitrile or methanol as organic modifier and MS/MS detection Selection of mobile phase additives As acidic analyte presents as anion ion at the neutral ph, which is not suitable for retaining on polysaccharidebased CSPs and resulting in early elution without enantiseparation, the acidic additive is often used as a counter ion in mobile phase for suppression of dissociation of acidic analyte to increase the elution time and enantioselectivity of acidic racemates on CSPs Three acids - trifluoroacetic acid (TFA)- pk a 59; formic acid (FA) - pk a 375; acetic acid HAc) - pk a 476 were evaluated on Lux Cellulose-1 and Lux Amylose-2 CSPs as acidic additives In general, these additives provide similar enantioresolution for weakly acidic racemates (Figure 5, a, b, c) while the stronger acidic additive (TFA) performs better for the stronger acidic racemates (Figure 5, d, e, f) Formic acid provides comparable enantioseparations and peak shapes to TFA Considering the memory effect of TFA on polysaccharide-based CSPs and its ion suppressing tendency in MS detection, formic acid is preferred over TFA in RP MPs for the chiral separation and MS/MS detection of acidic racemates Effect of mobile phase additives The LC/MS/MS responses of acidic racemates with ESI in negative mode in 5 mm HCNH4, 5 mm CH3CNH4 and 5 mm NH4HC3 containing mobile phases with either acetonitrile or methanol as organic modifier using an achiral column Kinetex C18 were compared to responses in 1 % FA (Figure 3 and 4) The results show that MS/MS responses are comparable in 1 % FA CN or MeH to the responses of analytes in other additives considerd here in the ESI- mode This proves that 1 % FA as acidic additive in mobile phases is compatible for MS/MS detection and favored for enantioseparation of acidic racemates, except for carprofen which showed very poor responses in all of the additives at ESI - mode This proves that 1 % FA as acidic mobile phase additive is fully compatible with MS/MS detection of acidic racemates and can be implemented as the first choice Effect of organic modifier on chiral resolution Acetonitrile or methanol was used in chiral RP HPLC separations as organic modifiers Decreasing the eluting strength of the mobile phase by decreasing the portion of acetonitrile or methanol in the mobile phase will increase retention and resolution (Figure 6) However, once enantiomers elute later than 1 minutes with only partial resolution, baseline separation can rarely be achieved by further decreasing the % organic modifier in the mobile phase In our study, acetonitrile was more successful in providing chiral resolution on Lux CSP in RP mode compared to methanol (Figure 7) Chiral LC/MS/MS applications Figures 8-11 demonstrate 15 chiral separations on Lux CSPs APCI - source was employed for the MS/MS detection of carprofen, abscisic acid, and fenoprofen as APCI - provides much better MS/MS signals than ESI - for these three acidic racemates ESI + mode was used for the MS/MS detection of suprofen Most compounds evaluated here eluted in less than 1 min with baseline resolution in mobile phases of various eluting strength The results show that Lux Cellulose-3 was most successful in separating acidic racemates (1 racemates), especially non-steroidal anti-inflammatory racemates

Conclusions Fifteen successful chiral LC/MS/MS analyses are demonstrated for acidic racemic compounds on the polysaccharide-based CSPs Lux Cellulose-1, Lux Cellulose-2, Lux Cellulose-3, Lux Cellulose-4, and Lux Amylose-2 in reversed phase elution mode Formic acid as acidic additive in mobile phases is compatible for MS/MS detection and favored for enantioseparation of acidic racemates in RP Increasing the volume fraction of organic modifier (acetonitrile or methanol) in the RP mobile phase has the expected effect: it decreases retention and enantioselectivity; adjusting the organic modifier content of the mobile phase is essential to optimizing chiral resolution

References 1 Liming P, Tivadar F, Swapna J, Chirality 211 poster 2 HR Buser, MD Müller, Anal Chem 64 (1992) 3168 3 ML de la Puente, J Chromatogr A 155 (24) 55 4 SMR Stanley, WK Wee, BH Lim, HC Foo, J Chromatogr B 848 (27) 292 Trademarks Lux and Kinetex are registered trademarks of Phenomenex, Inc Agilent is a registered trademark of Agilent Technologies API 4 and Turbo V are trademarks of AB Sciex Pte Ltd TurboIonSpray is a registered trademark of AB Sciex Pte Ltd AB SCIEX is being used under license Disclaimer Phenomenex, Inc is not affiliated with Agilent Technologies or AB SCIEX Comparative separations may not be representative of all applications 211 Phenomenex, Inc All rights reserved