EXPONENTIAL DICHOTOMY OF DIFFERENCE EQUATIONS IN l p -PHASE SPACES ON THE HALF-LINE

Similar documents
DISCRETE METHODS AND EXPONENTIAL DICHOTOMY OF SEMIGROUPS. 1. Introduction

A. L. Sasu EXPONENTIAL INSTABILITY AND COMPLETE ADMISSIBILITY FOR SEMIGROUPS IN BANACH SPACES

Spectrum for compact operators on Banach spaces

Research Article The Solution by Iteration of a Composed K-Positive Definite Operator Equation in a Banach Space

THE PERRON PROBLEM FOR C-SEMIGROUPS

Research Article A New Fractional Integral Inequality with Singularity and Its Application

Research Article Convergence Theorems for Common Fixed Points of Nonself Asymptotically Quasi-Non-Expansive Mappings

Research Article Generalized Mann Iterations for Approximating Fixed Points of a Family of Hemicontractions

On (h, k) trichotomy for skew-evolution semiflows in Banach spaces

Some Concepts of Uniform Exponential Dichotomy for Skew-Evolution Semiflows in Banach Spaces

A NEW COMPOSITE IMPLICIT ITERATIVE PROCESS FOR A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

Mathematical Journal of Okayama University

16 1 Basic Facts from Functional Analysis and Banach Lattices

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Research Article The Existence of Fixed Points for Nonlinear Contractive Maps in Metric Spaces with w-distances

Some Characterizations for the Uniform Exponential Expansiveness of Linear Skew-evolution Semiflows

ON THE EIGENVALUE OF INFINITE MATRICES WITH NONNEGATIVE OFF-DIAGONAL ELEMENTS

Research Article Almost Periodic Solutions of Prey-Predator Discrete Models with Delay

Research Article Domination Conditions for Families of Quasinearly Subharmonic Functions

Research Article Frequent Oscillatory Behavior of Delay Partial Difference Equations with Positive and Negative Coefficients

General Mathematics Vol. 16, No. 1 (2008), A. P. Madrid, C. C. Peña

Strong convergence theorems for total quasi-ϕasymptotically

Research Article Localization and Perturbations of Roots to Systems of Polynomial Equations

Research Article Strong Convergence of Cesàro Mean Iterations for Nonexpansive Nonself-Mappings in Banach Spaces

Analysis Comprehensive Exam Questions Fall 2008

Research Article Iterative Approximation of Common Fixed Points of Two Nonself Asymptotically Nonexpansive Mappings

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Diffun2, Fredholm Operators

Available online at J. Math. Comput. Sci. 4 (2014), No. 1, 1-9 ISSN:

Homework If the inverse T 1 of a closed linear operator exists, show that T 1 is a closed linear operator.

Research Article Existence and Uniqueness of Homoclinic Solution for a Class of Nonlinear Second-Order Differential Equations

Banach Spaces II: Elementary Banach Space Theory

TWO DEFINITIONS OF EXPONENTIAL DICHOTOMY FOR SKEW-PRODUCT SEMIFLOW IN BANACH SPACES

Research Article The (D) Property in Banach Spaces

Bounded Generalized Random Linear Operators

Research Article Fixed Point Theorems in Cone Banach Spaces

MIHAIL MEGAN and LARISA BIRIŞ

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Strong Convergence of the Mann Iteration for Demicontractive Mappings

Research Article On λ-statistically Convergent Double Sequences of Fuzzy Numbers

Fixed point theorems for a class of maps in normed Boolean vector spaces

INEQUALITIES FOR DUAL AFFINE QUERMASSINTEGRALS

Strong convergence theorems for asymptotically nonexpansive nonself-mappings with applications

Research Article Iterative Approximation of a Common Zero of a Countably Infinite Family of m-accretive Operators in Banach Spaces

Patryk Pagacz. Characterization of strong stability of power-bounded operators. Uniwersytet Jagielloński

Research Article Some Estimates of Certain Subnormal and Hyponormal Derivations

The fundamental properties of quasi-semigroups

The spectral mapping theorem for evolution semigroups on spaces of vector valued functions

On a Boundary-Value Problem for Third Order Operator-Differential Equations on a Finite Interval

Research Article k-kernel Symmetric Matrices

Compact operators on Banach spaces

Research Article Nonlinear Systems of Second-Order ODEs

ALMOST PERIODIC SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS ON HILBERT SPACES

Basicity of System of Exponents with Complex Coefficients in Generalized Lebesgue Spaces

Research Article Approximation of Solutions of Nonlinear Integral Equations of Hammerstein Type with Lipschitz and Bounded Nonlinear Operators

Research Article Bessel and Grüss Type Inequalities in Inner Product Modules over Banach -Algebras

Research Article Brézis-Wainger Inequality on Riemannian Manifolds

Research Article Variational-Like Inclusions and Resolvent Equations Involving Infinite Family of Set-Valued Mappings

Research Article The Existence of Countably Many Positive Solutions for Nonlinear nth-order Three-Point Boundary Value Problems

Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric spaces

Research Article Almost α-hyponormal Operators with Weyl Spectrum of Area Zero

Research Article Existence and Uniqueness of Smooth Positive Solutions to a Class of Singular m-point Boundary Value Problems

A Note of the Strong Convergence of the Mann Iteration for Demicontractive Mappings

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

Convex Sets Strict Separation in Hilbert Spaces

MATH 117 LECTURE NOTES

Research Article On the Variational Eigenvalues Which Are Not of Ljusternik-Schnirelmann Type

Research Article Hybrid Algorithm of Fixed Point for Weak Relatively Nonexpansive Multivalued Mappings and Applications

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

Research Article Global Dynamics of a Competitive System of Rational Difference Equations in the Plane

Research Article Singular Cauchy Initial Value Problem for Certain Classes of Integro-Differential Equations

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

Research Article On the Idempotent Solutions of a Kind of Operator Equations

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

I teach myself... Hilbert spaces

Functional Analysis, Math 7321 Lecture Notes from April 04, 2017 taken by Chandi Bhandari

Jordan Journal of Mathematics and Statistics (JJMS) 8(3), 2015, pp THE NORM OF CERTAIN MATRIX OPERATORS ON NEW DIFFERENCE SEQUENCE SPACES

On the dynamics of strongly tridiagonal competitive-cooperative system

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems

Research Article New Classes of Analytic Functions Involving Generalized Noor Integral Operator

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations

Research Article Exponential Inequalities for Positively Associated Random Variables and Applications

Chapter 3: Baire category and open mapping theorems

4 Linear operators and linear functionals

A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (2010),

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan


Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations

Research Article Strong Convergence of Parallel Iterative Algorithm with Mean Errors for Two Finite Families of Ćirić Quasi-Contractive Operators

Research Article Product of Extended Cesàro Operator and Composition Operator from Lipschitz Space to F p, q, s Space on the Unit Ball

Research Article Asymptotic Behavior of the Solutions of System of Difference Equations of Exponential Form

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup

Research Article Strong Convergence of a Projected Gradient Method

Research Article Uniqueness of Positive Solutions for a Class of Fourth-Order Boundary Value Problems

Iowa State University. Instructor: Alex Roitershtein Summer Exam #1. Solutions. x u = 2 x v

Research Article Function Spaces with a Random Variable Exponent

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

Approximation of Integrable Functions by Wavelet Expansions

Research Article Approximating Fixed Points of Some Maps in Uniformly Convex Metric Spaces

Transcription:

EXPONENTIAL DICHOTOMY OF DIFFERENCE EQUATIONS IN l p -PHASE SPACES ON THE HALF-LINE NGUYEN THIEU HUY AND VU THI NGOC HA Received 14 November 2005; Revised 12 March 2006; Accepted 17 May 2006 For a sequence of bounded linear operators {A n } n=0 onabanachspacex,weinvestigate the characterization of exponential dichotomy of the difference equations v n+1 = A n v n. We characterize the exponential dichotomy of difference equations in terms of the existence of solutions to the equations v n+1 = A n v n + f n in l p spaces (1 p< ). Then we apply the results to study the robustness of exponential dichotomy of difference equations. Copyright 2006 N. T. Huy and V. T. N. Ha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction and preliminaries We consider the difference equation x n+1 = A n x n, n N, (1.1) where A n, n = 0,1,2,..., is a sequence of bounded linear operators on a given Banach space X, x n X for n N. One of the central interests in the asymptotic behavior of solutions to (1.1) istofind conditions for solutions to (1.1) to be stable, unstable, and especially to have an exponential dichotomy (see, e.g., [1, 5, 7, 12, 16 20] and the references therein for more details on the history of this problem). One can also use the results on exponential dichotomy of difference equations to obtain characterization of exponential dichotomy of evolution equations through the discretizing processes (see, e.g., [4, 7, 9, 18]). One can easily see that if A n = A for all n N, then the asymptotic behavior of solutionsto (1.1) can be determinedby the spectraof the operatora. However, the situation becomes more complicated if {A n } n N is not a constant sequence because, in this case, the spectra of each operator A n cannot determine the asymptotic behavior of the solutions to (1.1). Therefore, in order to find the conditions for (1.1)tohaveanexponential dichotomy, one tries to relate the exponential dichotomy of (1.1) to the solvability of the Hindawi Publishing Corporation AdvancesinDifference Equations Volume 2006, Article ID 58453, Pages 1 14 DOI 10.1155/ADE/2006/58453

2 Exponential dichotomy following inhomogeneous equation: x n+1 = A n x n + f n, n N, (1.2) in some certain sequence spaces for each given f ={f n }. In other words, one wants to relate the exponential dichotomy of (1.1) to the surjectiveness of the operator T defined by (Tx) n := x n+1 A n x n for x = { x n } belonging to a relevant sequence space. (1.3) In the infinite-dimensional case, in order to characterize the exponential dichotomy of (1.1) defined on N, beside the surjectiveness of the operator T, one needs a priori condition that the stable space is complemented (see, e.g., [5]). In our recent paper, we have replaced this condition by the spectral conditions of related operators (see [9, Corollary 3.3]). At this point, we would like to note that if one considers the difference equation (1.1) defined on Z, then the existence of exponential dichotomy of (1.1) is equivalent to the existence and uniqueness of the solution of (1.2) foragiven f ={f n } n Z, or, in other words, to the invertibility of the operator T on suitable sequence spaces defined on Z. This means that one can drop the above priori condition in the case that the difference equations are defined on Z (see [7, Theorem 3.3] for the original result and see also [2, 3, 11, 15] for recent results on the exponential dichotomy of difference equations defined on Z). However, if one considers the difference equation (1.1) defined only on N, then the situation becomes more complicated, because for a given f ={f n } n N, the solutions of the difference equation (1.2) on N are not unique even in the case that the difference equation (1.1) has an exponentialdichotomy. Moreover, one does not have any information on the negative half-line Z :={z Z : z 0} of the difference equations (1.1) and (1.2) (we refer the readers to [8] for more details on the differences between the exponential dichotomy of the differential equations definedon the half-line and on the whole line). Therefore, one needs new ideas and new techniques to handle the exponential dichotomy of difference equations defined only on N.For differential equations defined on the half-line, such ideas and techniques have appeared in [14] (seealso[8, 13]). Those ideas and techniques have been exploited to obtain the characterization of exponential dichotomy of difference equations defined on N with l -phase space of sequences defined on N (see [9]). As a result, we have obtained a necessary and sufficient condition for difference equations to have an exponential dichotomy. This conditions related to the solvability of (1.2) inl spaces of sequences defined on N. In the present paper, we will characterize the exponential dichotomy of (1.1) by the solvability of (1.2) inl p spaces (1 p< ) ofsequencesdefinedonn. Moreover, we also characterize the exponential dichotomy by invertibility of a certain appropriate difference operator derived from the operator T. Consequently, we will use this characterization to prove the robustness of exponential dichotomy under small perturbations. Our results are contained in Theorems 3.2, 3.6, 3.7, and Corollary 3.3. To describe more detailedly our construction, we will use the following notation: in this paper X denotes a given complex Banach space endowed with the norm.as

N. T. Huy and V. T. N. Ha 3 usual, we denote by N, R, R +,andc the sets of natural, real, nonnegative real, and complex numbers, respectively. Throughout this paper, for 1 p< we will consider the following sequence spaces: { l p (N,X):= v = { v n }n N : v n X : } v n p < := l p, n=0 (1.4) l 0 p(n,x):= { v = { v n } : v lp ; v 0 = 0 } := l 0 p endowed with the norm v p := ( n=0 v n p ) 1/p. Let {A n } n N be a sequence of bounded linear operators from X to X whichisuniformly bounded. This means that there exists M>0suchthat A n x M x for all n N and x X. Next we define a discrete evolution family = (U n,m ) n m 0 associated with the sequence {A n } n N as follows: U m,m = Id (the identity operator in X) U n,m = A n 1 A n 2 A m for n>m. (1.5) The uniform boundedness of {A n } yields the exponential boundedness of the evolution family (U n,m ) n m 0. That is, there exist positive constants K, α such that U n,m x Ke α(n m) x ; x X; n m 0. Definition 1.1. Equation (1.1) is said to have an exponential dichotomy if there exist a family of projections (P n ) n N on X and positive constants N, ν such that (1) A n P n = P n+1 A n ; (2) A n :kerp n kerp n+1 is an isomorphism and its inverse is denoted by A 1 n ; (3) U n,m x Ne ν(n m) x ; n m 0; x P m X; (4) denote U m,n = A 1 ma 1 m+1 A 1 n 1; n>m,andu m,m = Id, then U m,n x Ne ν(n m) x, n m 0; x kerp n. (1.6) The above family of projections (P n ) n N is called the family of dichotomy projections. We definea linearoperatort as follows: If u = { u n } lp set (Tu) n = u n+1 A n u n for n N. (1.7) For u ={u n } l p,wehave (Tu) n = u n+1 A n u n u n+1 + M u n,hencetu l p and Tu p (1 + M) u p. This means that T is a bounded linear operator from l p into l p. We denote the restriction of T on l 0 p by T 0, this means that D(T 0 ) = l 0 p and T 0 u = Tu for u l 0 p. From the definition of T, the following are obvious. Remark 1.2. (i) kert ={u ={u n } l p : u n = U n,0 u 0, n N}. (ii) It is easy to verify that T 0 is injective. Indeed, let u ={u n }, v ={v n } l 0 p and T 0 u = T 0 v.thenwehaveu 0 = v 0 = 0, u 1 = (T 0 v) 0 = v 1, u 2 = A 1 u 1 +(T 0 u) 1 = A 1 v 1 +(T 0 v) 1 = v 2,..., u n+1 = A n u n +(T 0 u) n = A n v n +(T 0 v) n = v n+1,foralln N.Hence,u = v.

4 Exponential dichotomy Recall that for an operator B on a Banach space Y, the approximate point spectrum Aσ(B) ofb is the set of all complex numbers λ such that for every ɛ > 0, there exists y D(B)with y =1and (λ B)y ɛ. In order to characterize the exponential stability and dichotomy of an evolution family, we need the concept of l p -stable spaces defined as follows. Definition 1.3. For a discrete evolution family = (U m,n ) m n 0, m,n N, onbanach space X and n 0 N, define the l p -stable space X 0 (n 0 )by ( ) X 0 n0 := {x X : U n,n0 x } p <. (1.8) n=n 0 An orbit U m,n0 x for m n 0 0andx X 0 (n 0 )iscalledanl p -stable orbit. 2. Exponential stability In this section we will give a sufficient condition for stability of l p -stable orbits of a discrete evolution family. The obtained results will be used in the next section to characterize the exponential dichotomy of (1.1). Theorem 2.1. Let the operator T 0 defined as above satisfy the condition 0 Aσ(T 0 ). Then every l p -stable orbit of is exponentially stable. Precisely, there exist positive constants N, ν such that for any n 0 N and x X 0 (n 0 ), U n,n0 x Ne ν(n s) U s,n0 x, n s n 0. (2.1) Proof. Since 0 Aσ(T 0 ), we have that there exists a constant η>0suchthat η T 0 v p v p for v l 0 p. (2.2) To prove (2.1), we first prove that there is a positive constant l such that for any n 0 N and x X 0 (n 0 ), U n,n0 x l U s,n0 x, n s n 0 0. (2.3) Fix n 0 N, x X 0 (n 0 ), and s n 0.Taking v = { } U n,n0 x for n>s, v n with v n := 0 for0 n s, (2.4) we have v l 0 p. By definition of T 0,wehave(T 0 v) n = v n+1 A n v n. This yields ( T0 v ) 0 forn s 1, n = U s+1,n0 x for n = s, 0 forn>s. (2.5)

N. T. Huy and V. T. N. Ha 5 By inequality (2.2), we have η U s+1,n0 x ( U k,n0 x ) 1/p p U n,n0 x for n>s n 0. (2.6) k=s Hence, U n,n0 x η U s+1,n0 x = η U s+1,s U s,n0 x ηm U s,n0 x for n>s n 0. (2.7) Putting l = max{1,ηm},weobtain(2.3). We now show that there is a number K = K(η,l) > 0 such that for any n 0 N and x X 0 (n 0 ), U s+n,n0 x 1 2 U s,n0 x for n K, s n 0. (2.8) To prove (2.8), put u n := U n,n0 x, n n 0,andleta<bbe two natural numbers with a n 0 such that u b > 1/2 u a.from(2.3), we obtain that l u a u n > 1 2l u a for a n b. (2.9) Put now v = { v n } with v n = 0 for0 n a, n u n k=a+1 b+1 u n k=a+1 1 u k for a +1 n b, 1 u k for n b +1. (2.10) Then v l 0 p. By definition of T 0,wehave 0, for 0 n<a, { (T0 T 0 v = v ) ( n} with T0 v ) n = u n+1 u n+1 for a n b 1, 0 forn b. (2.11) By inequality (2.2), we obtain η(b a) 1/p v p. (2.12) Using Hölder inequality for v and χ [a+1,b],where ( χ[a+1,b] ) n = 1 fora +1 n b, 0 otherwise, (2.13)

6 Exponential dichotomy we have that b n=a+1 Substituting this into inequality (2.12), we obtain that v n (b a) 1 1/p v p. (2.14) η(b a) Using now the estimates (2.9), we have b n=a+1 v n. (2.15) η(b a) b n=a+1 b n=a+1 v n = 1 2l u a b n n=a+1 k=a+1 n k=a+1 u n u k 1 l (b a)(b a +1) (b a)2 u a = 4l 2 > 4l 2. (2.16) This yields b a<4ηl 2.PuttingK := 4ηl 2, the inequality (2.1)follows. We finish by proving (2.1). Indeed, if n s n 0 N writing n s = n 1 K + r for 0 r<k,andn 1 N,wehave U n,n0 x = U n s+s,n0 x = U n1k+r+s,n 0 x by (2.8) 1 U r+s,n0 x by (2.3) l U s,n0 x 2le ((n s)/k)ln2 U s,n0 x. 2 n1 2 n1 Taking N := 2l and ν := ln2/k, the inequality (2.1)follows. From this theorem, we obtain the following corollary. (2.17) Corollary 2.2. Under the conditions of Theorem 2.1, the space X 0 (n 0 ) can be expressed as X 0 ( n0 ) = { x X : U n,n0 x Ne ν(n n 0) x ; n n 0 0 }, (2.18) for certain positive constants N, ν.hence,x 0 (n 0 ) is a closed linear subspace of X. 3. Exponential dichotomy and perturbations We will characterize the exponential dichotomy of (1.1) by using the operators T 0, T. In particular, we will also get necessary and sufficient conditions for exponential dichotomy in Hilbert spaces and finite-dimensional spaces. Moreover, using our characterization of the exponential dichotomy, we can prove the robustness of the exponential dichotomy of (1.1) under small perturbations. Then we start with the following lemma which has a history that can be traced back to [14, Lemma 4.2] and to [6] and beyond. Lemma 3.1. Assume that (1.1) has an exponential dichotomy with corresponding family of projections P n, n 0, and constants N>0, ν > 0, then M := sup n 0 P n <.

N. T. Huy and V. T. N. Ha 7 Proof. The proof is done in [9, Lemma 3.1]. We present it here for sake of completeness. Fix n 0 > 0, and set P 0 := P n0 ; P 1 := Id P n0, X k = P k X, k = 0,1. Set γ 0 := inf{ x 0 + x 1 : x k X k, x 0 = x 1 =1}.Ifx X and P k x 0, k = 0,1, then P γ 0 x n0 P 0 x + P1 x P 1 x 1 P 0 x P0 x + P 0 x P 1 x P1 x 1 P 0 x x + P 0 x P 1 x P 1 x P 1 x 2 x P 0 (x). (3.1) Hence, P 0 2/γ n0. It remains to show that there is a constant c>0 (independent of n 0 ) such that γ n0 c. For this, fix x k X k, k = 0,1, with x k =1. By the exponential boundedness of, wehave U n,n0 (x 0 + x 1 ) Ke α(n n0) x 0 + x 1 for n n 0 and constants K, α 0. Thus, x 0 + x 1 K 1 e α(n n0) U n,n0 x 0 + U n,n0 x 1 K 1 e α(n n0)( N 1 e ν(n n0) Ne ν(n n0)) =: c n n0, (3.2) and hence γ n0 c n n0.obviouslyc m > 0form sufficiently large. Thus 0 <c m γ n0. Now we come to our first main result. It characterizes the exponential dichotomy of (1.1) by properties of the operator T. Theorem 3.2. Let {A n } n N be a family of bounded linear and uniformly bounded operators on the Banachspace X. Then the following assertions are equivalent. (i) Equation (1.1) has an exponential dichotomy. (ii) T is surjective and X 0 (0) is complemented in X. Proof. (i) (ii). Let (P n ) n 0 be the family of dichotomy projections. Then X 0 (0) = P 0 X, and hence X 0 (0) is complemented. If f l p,definev ={v n } n N by n ( ) U n,k P k f k 1 U n,k Id Pk fk 1 for n 1, k=1 k=n+1 v n = ( ) U 0,k Id Pk fk 1 for n = 0, k=1 (3.3) then v n+1 = A n v n + f n. Moreover, since n U n,k P k f k 1 k=1 k=n+1 U n,k ( Id Pk ) fk 1 N e ν n k f k 1 (3.4) and f l p, we can easily derive that v l p. By the definition of T,wehaveTv = f.therefore T : l p l p is surjective. k=1

8 Exponential dichotomy (ii) (i). We prove this in several steps. (A) Let Z X be a complement of X 0 (0) in X, that is, X = X 0 (0) Z. SetX 1 (n) = U n,0 Z.Then U n,s X 0 (s) X 0 (n), U n,s X 1 (s) = X 1 (n), n s 0. (3.5) (B) There are constants N,ν > 0suchthat U n,0 x Ne ν(n s) U s,0 x for x X 1 (0), n s 0. (3.6) In fact, let Y := {(v n ) n N l p : v 0 X 1 (0)} endowed with l p -norm. Then Y is a closed subspace of the Banach space l p, and hence Y is complete. By Remark 1.2,wehavekerT := {v l p : v n = U n,0 x for some x X 0 (0)}.SinceX = X 0 (0) X 1 (0) and T is surjective, we obtain that T : Y l p (3.7) is bijective and hence an isomorphism. Thus, by Banach isomorphism theorem, there is aconstantη>0suchthat η Tv p v p, forv Y. (3.8) To prove (3.6), we first prove that there is a positive constant l such that U n,0 x l U s,0 x for x X 1 (0), n s 0, n,s N. (3.9) Indeed, fix x X 1 (0), x 0, and n s 0. If n = 0, there is nothing to do. So, assume that n 1. Now taking v := { v m } U m,0 x for 0 m n 1, with v m := 0 form>n 1, (3.10) we have that v Y. Then, by definition of T,weobtainthat 0 form>n 1, (Tv) m := U n,0 x for m = n 1, 0 form<n 1. (3.11) Inequality (3.8)yields η U n,0 x n 1 U k,0 x p k=0 Putting now l := min{1/η,1}, inequality (3.9) follows. 1/p U s,0 x 0 s n 1. (3.12)

We now show that there is a number K = K(η,l) > 0suchthat N. T. Huy and V. T. N. Ha 9 U s+n,0 x 2 U s,0 x for n K, s 0; x X 1 (0). (3.13) Let 0 x X 1 (0), set u n := U n,0 x, n 0. By Remark 1.2 we have u n 0foralln 0. To prove (3.13), let a<bbe two natural numbers such that u b < 2 u a.from(3.9), we obtain that 2 l u a > u n l u a a n b. (3.14) Take now v ={v n },where b 1 u n u k=a+1 k for 0 n<a, v n = b 1 u n u k=n+1 k for a n<b, 0 forn b. Then, v Y. By definition of T,wehavethat 0 for0 n<a, u (Tv) n = n+1 u n+1 for a n<b, 0 forn b. (3.15) (3.16) By inequality (3.8), we obtain η(b a) 1/p v p. (3.17) Using Hölder inequality for v and χ [a,b 1],where ( χ[a,b 1] ) n = 1 fora n b 1, 0 otherwise, (3.18) we have that b 1 v n (b a) 1 1/p v p. (3.19) n=a Substituting this into inequality (3.17), we obtain that b 1 η(b a) v n. (3.20) n=a

10 Exponential dichotomy Using now the estimates (3.14), we have b 1 η(b a) b 1 v n = n=a b 1 n=a l u a b n=a k=n+1 b k=n+1 u n u k l 2 u a = l2 (b a)(b a +1) 4 > l2 (b a) 2. 4 (3.21) This yields b a<4η/l 2.PuttingK := 4η/l 2, the inequality (3.13)follows. We finish this step by proving inequality (3.6). Indeed, if n s N, writingn s = n 0 K + r for 0 r<k,andn 0 N,wehave U n,0 x = U n s+s,0 x = U n0k+r+s,0x by (3.13) 2 n0 U r+s,0 x by (3.9) l2 n0 U s,0 x l 2 e((n s)/k)ln2 U s,0 x. (3.22) Taking N := l/2andν := ln2/k, inequality (3.6)follows. (C) X = X 0 (n) X 1 (n), n N. Let Y l p be as in (B). Then by Remark 1.2, wehavethatl 0 p Y. From this fact and (3.8), we obtain that η T 0 v lp v lp,forv l 0 p.thus, 0 Aσ ( T 0 ). (3.23) The relation (3.23) andcorollary 2.2 imply that X 0 (n) isclosed.from(3.5), (3.6), and the closedness of X 1 (0), we can easily derive that X 1 (n)isclosedandx 1 (n) X 0 (n) ={0} for n 0. Finally, fix n 0 > 0, and x X (note that we already have X = X 0 (0) X 1 (0)). For a natural number n 1 >n 0 +1,set v = { v n } f = { f n } 0 for0 n<n 0, ( with v n = n n0 +1 ) U n,n0 x for n 0 n n 1, 0 forn>n 1, 0 for0 n<n 0, U n+1,n0 x for n 0 n<n 1, with f n = ( n 1 n 0 +1 ) U n+1,n0 x for n = n 1, 0 forn>n 1. (3.24) Then v, f l p and satisfy (1.2)foralln n 0 > 0. By assumption, there exists w l p such that Tw = f. By the definition of T, w n is a solution of (1.2). Thus, v n w n = U n,n0 ( vn0 w n0 ) = Un,n0 ( x wn0 ), n n0. (3.25)

N. T. Huy and V. T. N. Ha 11 Since v w l p,wehavethatx w n0 X 0 (n 0 ). On the other hand, since w 0 = w 0 + w 1 with w k X k (0), w n0 = U n0,0w 0 + U n0,0w 1,andby(3.5), we have U n0,0w k X k (n 0 ), k = 0,1. Hence x = x w n0 + w n0 = x w n0 + U n0,0w 0 + U n0,0w 1 X 0 (n 0 )+X 1 (n 0 ). This proves (C). (D) Let P n be the projections from X onto X 0 (n)withkernelx 1 (n), n 0. Then (3.5) implies that P n+1 U n+1,n = U n+1,n P n,ora n P n = P n+1 A n for n 0. From (3.5), (3.6), and A n = U n+1,n,weobtainthata n :kerp n kerp n+1, n 0 is an isomorphism. Finally, by (3.6), Theorem 2.1, and the assumption 0 Aσ(T 0 ), there exist constants N,ν > 0such that U n,m x Ne ν(n m) x for x P m X, n m 0, U m,n x (3.26) Ne ν(n m) x for x kerp n, n m 0. Thus (1.1) has an exponential dichotomy. If X is a Hilbert space, we need only the closedness of X 0 (0). Therefore, we obtain the following corollary. Corollary 3.3. If X is a Hilbert space, then the conditions that 0 Aσ(T 0 ) and T is surjective are necessary and sufficient for (1.1) to have an exponential dichotomy. This can be restated as follows. If X is a Hilbert space, then the conditions (1) for all f l p, there exists a solution x l p of (1.2); (2) there exists a constant c>0 such that all bounded solutions x ={x n } (with x 0 = 0 and x l p )of(1.2)(with f l p )satisfy n=0 x n p c n=0 f n p are necessary and sufficient for (1.1) to have an exponential dichotomy. Proof. The corollary is obviousin viewof Corollary 2.2 and Theorem3.2. If X is a finite-dimensional space, then every subspace of X is closed and complemented. Hence, by Theorem 3.2 we have the following corollary. Corollary 3.4. If X is a finite-dimensional space, then the condition that T is surjective is necessary and sufficient for existence of exponential dichotomy of (1.1). In our next result, we will characterize the exponential dichotomy of (1.1) using invertibility of a certain operator derived from the operator T. Inordertoobtainsuch a characterization, we have to know the subspace kerp 0 in advance (see Theorem 3.6). Consequently, the exponential dichotomy of evolution family will be characterized by the invertibility of the restriction of T to a certain subspace of l p. This restriction will be defined as follows. Definition 3.5. For a closed linear subspace Z of X,define l Z p := { f = { f n } lp : f 0 Z }. (3.27) Then, l Z p is a closed subspace of (l p, p ). Denote by T Z the part of T in l Z p, that is, D(T Z ) = l Z p and T Z u = Tu for u l Z p.

12 Exponential dichotomy With these notations, we obtain the following characterization of exponential dichotomy of (1.1). Theorem 3.6. Let {A n } n N be a family of bounded linear and uniformly bounded operators on the Banach space X and let Z be a closed linear subspace of X. Then the following assertions are equivalent. (i) Equation (1.1) has an exponential dichotomy with the family of dichotomy projections {P n } n N satisfying kerp 0 = Z. (ii) T Z : l Z p l p is invertible. Proof. We first note that the following proof is inspired by the proof of [14, Theorem 4.5]. (i) (ii). Let P n, n N, be a family of projections given by the exponential dichotomy of (1.1)suchthatkerP 0 = Z.ThenP 0 X = X 0 (0) and X = X 0 (0) Z.Fix f ={f n } l p.by Theorem 3.2, there is v ={v n } D(T)suchthatTv = f. On the other hand, by definition of X 0 (0), the sequence u ={u n } defined by u n = U n,0 P 0 v 0 belongs to l p. By definition of T, we obtain that Tu = 0. Moreover, v 0 u 0 = v 0 P 0 v 0 Z since X = P 0 X Z. Therefore, v u l Z p and T Z (v u) = T(v u) = Tv = f.hence,t Z : D(T Z ) l p is surjective. If now w ={w n } kert Z then, by definition of T Z, w n = U n,0 w 0 with w 0 Z X 0 (0)= {0}.Thus,w = 0, that is, T Z is injective. (ii) (i). Let T Z : l Z p l p be invertible. Since T Z is the restriction of T to l Z p,itfollows that T is surjective. The boundedness of T Z implies that TZ 1 is bounded, and hence there is η>0suchthatη Tv p = η T Z v p v p for all v l Z p.sincet 0 is the part of T Z in l 0 p ={f l p : f 0 = 0}, weobtainthatη T 0 v p v p for all v D(T 0 ). Hence, 0 Aσ(T 0 ). By Corollary 2.2, X 0 (0) is closed. We now prove that X = X 0 (0) Z.Letnowx X. IfU n,0 x = 0forsomen = n 0 > 0, then U n,0 x = U n,n0 U n0,0x = 0foralln n 0 yielding x X 0 (0). Otherwise, U n,0 x 0foralln N.Setu ={u n } with x for n = 0 u n := f = { } A 0 x for n = 0 f n with f n := (3.28) 0 forn>0, 0 forn>0. Clearly, u l p, f l p,and f n = u n+1 A n u n. Therefore, Tu = f. On the other hand, since T Z is invertible, there exists v l Z p such that T Z v = f = Tv.Thus,u v kert, and hence (u v) n = U n,0 ( u0 v 0 ) = Un,0 ( x v0 ), n N. (3.29) Since u v l p, this implies that x v 0 X 0 (0). Thus x = x v 0 + v 0 X 0 (0) + Z. If now y X 0 (0) Z, then the sequence w ={w n } defined by w n := U n,0 y, n N, belongs to l Z p kert (see definitions of X 0 (0) and T). Hence, T Z w = 0 and by invertibility of T Z,wehavethatw = 0. Thus y = w 0 = 0, that is, X 0 (0) Z ={0}. This yields that X = X 0 (0) Z. The assertion now follows from Theorem 3.2. Using the above characterization of exponential dichotomy, we now study the robustness of the exponential dichotomy of (1.1) under small perturbations. Precisely, we have the following perturbation theorem. Theorem 3.7. Let (1.1) have an exponential dichotomy and let {B n } n N be a sequence of bounded linear operators from X to X which is uniformly bounded (i.e., there is constant

N. T. Huy and V. T. N. Ha 13 M>0 such that B n M for all n N). Then, if H := sup n N B n is sufficiently small, the equation u n+1 = ( A n + B n ) un (3.30) has an exponential dichotomy as well. Proof. Let (1.1) have an exponential dichotomy with the corresponding dichotomy projections (P n ) n N.PutkerP 0 = Z. Then,Z is a closed subspace of X. ByTheorem 3.6, we have that the operator T Z defined by Definition 3.5 is invertible. Let now T B,Z be the operator corresponding to the perturbed difference equation (3.30). That is, T B,Z : l Z p l p is defined by (T B,Z u) n = u n+1 (A n + B n )u n. We now define the operator B by (B f ) n := B n f n for f ={f n } and all n N.WethenprovethatB : l p l p is a bounded linear operator and B H. Indeed, take f l p.then (Bf) n = B n f n H f n for all n N. It follows that the sequence B f belongs to l p and B f p H f p.wethusobtainthat B : l p l p is a bounded linear operator and B H. It is clear that T B,Z = T Z B. SinceT Z is invertible, by a perturbation theorem of Kato [10, IV.1.16], we obtain that if B is sufficiently small then T B,Z = T Z B is also invertible. By Theorem 3.6 we have that (3.30) has an exponential dichotomy. Acknowledgment The second author would like to thank Professor Heinrich Begehr for moral support. References [1] B. Aulbach and N. V. Minh, The concept of spectral dichotomy for linear difference equations. II, Journal of Difference Equations and Applications 2 (1996), no. 3, 251 262. [2] D. D. Bainov, S. I. Kostadinov, and P. P. Zabreiko, Stability of the notion of dichotomy of linear impulsive differentialequations ina Banachspace, Italian Journal of Pure and Applied Mathematics 1 (1997), 43 50 (1998). [3] A. G. Baskakov, Semigroups of difference operators in the spectral analysis of linear differential operators, Functional Analysis and Its Applications 30 (1996), no. 3, 149 157 (1997). [4] S.-N. Chow and H. Leiva, Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces,journalofdifferential Equations 120 (1995), no. 2, 429 477. [5] C. V. Coffman and J. J. Schäffer, Dichotomies for linear difference equations, Mathematische Annalen 172 (1967), no. 2, 139 166. [6] Ju. L. Dalec kiĭ and M. G. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, vol. 43, American Mathematical Society, Rhode Island, 1974. [7] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840, Springer, Berlin, 1981. [8] N.T.Huy,Exponential dichotomy of evolution equations and admissibility of function spaces on a half-line, Journal of Functional Analysis 235 (2006), no. 1, 330 354. [9] N. T. Huy and N. V. Minh, Exponential dichotomy of difference equations and applications to evolution equations on the half-line, Computers & Mathematics with Applications 42 (2001), no. 3 5, 301 311. [10] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1980.

14 Exponential dichotomy [11] Y. Latushkin and Y. Tomilov, Fredholm differential operators with unbounded coefficients,journal of Differential Equations208 (2005), no. 2, 388 429. [12] T. Li, Die Stabilitatsfrage bei Differenzengleichungen,ActaMathematica63 (1934), 99 141. [13] N. V. Minh and N. T. Huy, Characterizations of dichotomies of evolution equations on the half-line, Journal of Mathematical Analysis and Applications 261 (2001), no. 1, 28 44. [14] N. V. Minh, F. Räbiger, and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line, Integral Equations and Operator Theory 32 (1998), no. 3, 332 353. [15] P. H. A. Ngoc and T. Naito, New characterizations of exponential dichotomy and exponential stability of linear difference equations,journalofdifference Equations and Applications 11 (2005), no. 10, 909 918. [16] A.C.PetersonandY.N.Raffoul, Exponential stability of dynamic equations on time scales, AdvancesinDifference Equations 2005 (2005), no. 2, 133 144. [17] A. Rodkina and H. Schurz, Global asymptotic stability of solutions of cubic stochastic difference equations, AdvancesinDifference Equations 2004 (2004), no. 3, 249 260. [18] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol. 143, Springer, New York, 2002. [19] V. E. Slyusarchuk, Exponential dichotomy of solutions of discrete systems, Ukrainskiı MatematicheskiĭZhurnal35 (1983), no. 1, 109 115, 137. [20] G. Stefanidou and G. Papaschinopoulos, Trichotomy, stability, and oscillation of a fuzzy difference equation, AdvancesinDifference Equations 2004 (2004), no. 4, 337 357. Nguyen Thieu Huy: Department of Applied Mathematics, Hanoi University of Technology, Khoa Toan Ung Dung, Dai Hoc Bach Khoa Ha Noi, 1 Dai Co Viet Street, Hanoi, Vietnam E-mail address: huynguyen@mail.hut.edu.vn Vu Thi Ngoc Ha: Department of Applied Mathematics, Hanoi University of Technology, Khoa Toan Ung Dung, Dai Hoc Bach Khoa Ha Noi, 1 Dai Co Viet Street, Hanoi, Vietnam E-mail address: havvn@yahoo.com