Research Article Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Ciprofloxacin Drug

Similar documents
Research Article Inhibition of Corrosion of Aluminium in Potassium Hydroxide Solution by Pyridine Derivatives

Doctor of Philosophy

Adsorption and Thermodynamic Studies for Corrosion Inhibition of API 5L X-52 Steel in 2 M HCl Solution by Moxifloxacin

The Inhibition Effect of Succinic Acid on Corrosion of Low Carbon Steel in Hydrochloric Acid at Different Temperatures

STUDYING CORROSION INHIBITORY EFFECT OF ALOE VERA JUICE ON STAINLESS STEEL USED FOR ORANGE JUICE STORAGE

Journal of Chemical and Pharmaceutical Research, 2017, 9(6): Research Article

Inhibition of Aluminium Corrosion in Hydrochloric Acid Using Nizoral and the Effect of Iodide Ion Addition

Congo Red Dye As A Novel Corrosion Inhibitor for Zinc in Hydrochloric Acid Solution

Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium

1,2,3 BENZOTRIAZOLE AS CORROSION INHIBITOR

Inhibitory Action of Ficus carica Extracts on Aluminium Corrosion in Acidic Medium

Inhibition of Zinc by Natural Oil in 0.5N Hydrochloric Acid and 0.5N Sulfuric Acid

Corrosion inhibition of zinc in acid medium by Moringa oleifera and Mangifera indica leaves extracts

EVALUATION OF THE PERFORMANCE OF SOME CHEMICAL INHIBITORS ON CORROSION INHIBITION OF COPPER IN ACID MEDIA

Inhibition by 4-Chloro-2-FluoroBenzylamine Hydrochloride for Corrosion for Mild Steel in HCl Media

Inhibition of mild steel corrosion in formic and acetic acid solutions

J. Environ. Res. Develop. Journal of Environmental Research And Development Vol. 9 No. 02, October-December 2014

Corrosion Inhibition and Adsorption Properties of Soy Polymer Extract of Glycine Mac-L On Mild Steel in Acidic Medium

Synergistic Effect of Potassium Iodide on Corrosion Inhibition of Mild Steel in HCl Medium by Extracts of Nypa Fruticans Wurmb

Copper and its alloys are good corrosion resistance in water

Corrosion Inhibition of Mild Steel in Acid Media by Red Peanut skin extractfurfural

Antifungal Drug s Used As Metal Corrosion Inhibitor in Various Acid Medium

Corrosion Inhibition Efficiency of 3-Hydroxy-2- Methylquinazoline-4-one on Mild Steel in 1 M H 2 SO 4 and 1 M HCl Acid at Different Temperatures

Substituted Dithiobiurets, their Molybdenum and Tungsten Complexes as Corrosion Inhibitors for Mild Steel in Sulphuric Acid

Application of Hydroxytriazenes in Corrosion Protection of Brass

Pelagia Research Library

Journal of Chemical and Pharmaceutical Research, 2012, 4(7): Research Article

Inhibition Effect of Azadirachta indica, a Natural Product, on the Corrosion of Zinc in Hydrochloric Acid Solution

THE USE OF SOME 4-PHENYLTHIOSEMICARBAZONE DERIVATIVES AS CORROSION INHIBITORS FOR COPPER IN NITRIC ACID SOLUTION" H.A.

REACTION KINETICS OF CORROSION OF MILD STEEL IN PHOSPHORIC ACID

Pelagia Research Library

Corrosion Inhibition of 6061 Al alloy 15 vol% SiC (p) Composite in 0.5 M Hydrochloric Acid Solution

Corrosion Inhibition and Adsorption Properties of 1-Methyl Imidazole on Mild Steel in Binary Acid Mixture of (HNO3+HCl)

INVESTIGATION OF INHIBITION EFFECT OF NAPHTHYL CHALCONES ON MILD STEEL CORROSION IN SULPHURIC ACID MEDIUM

Corrosion inhibition of carbon steel in 1M HCl solution by Ruta graveolens extract

INHIBITION OF CORROSION OF MILD STEEL IN 1M SULPHURIC ACID BY A NEW SCHIFF BASE

Investigation of the inhibition of copper corrosion in nitric acid solutions by organic sulphide compound

Kinetics of the Corrosion of Mild Steel in Petroleum-Water Mixture Using Ethyl Ester of Lard as Inhibitor

Corrosion Inhibitive Effect of 2-(1-(2-Oxo-2h-Chromen-3-Yl) Ethylidene) Hydrazine Carboxamide on Zinc-Aluminum Alloy in 1.8m Hydrochloric Acid

International Journal of Advance Research, IJOAR.org ISSN

Research Article Optimization of Chemical Bath Deposited Mercury Chromium Sulphide Thin Films on Glass Substrate

Emilia Sonchifolia Extract as Green Corrosion Inhibitor for Mild Steel in Acid Medium using Weight Loss Method

Aniline as Corrosion Inhibitor for Zinc in Hydrochloric Acid

Adsorption and Inhibitive Properties of Peel extract of Cucurbita maxima as Green Inhibitor for Aluminium in 1N HCl

Corrosion Mitigation of Milk Can by Aloe Vera.

Journal of Chemical and Pharmaceutical Research

INFLUENCE OF CASSIA ALATA LEAVES ON ALUMINIUM IN 1.0N HYDROCHLORIC ACID

Journal of Chemical and Pharmaceutical Research

The Inhibition of Mild Steel Corrosion in Acidic Solution by Amine Melamine Chloral Resin

Inhibition of acidic corrosion of iron by some Carrageenan compounds

The inhibitive effect of Irvingia gabonensis extract on the corrosion of aluminium in 1M HCl solution

Azodyes as corrosion inhibitors for dissolution of C-steel in hydrochloric acid solution

Hexamine as Corrosion Inhibitors for Zinc in Phosphoric Acid

Inhibition of the Corrosion of Zinc in H 2 SO 4 by 9-deoxy-9aaza-9a-methyl-9a-homoerythromycin

Inhibitive effect of Prosopis cineraria on mild steel in acidic media

EXPERIMENTAL AND THEORETICAL INVESTIGATION ON CORROSION INHIBITION OF MILD STEEL IN SULPHURIC ACID BY COCCINIA INDICA LEAVES EXTRACT

Metal attack and dissolution of scale by mixtures of acids

Inhibition Effect of Cajanus Cajan Leaves Extract on the Corrosion of Mild Steel in 1 M HCl Solution

Sulphuric Acid Corrosion of Mild Steel in Leave Extracts of Cnidoscolus aconitifolius Plant

Question Bank Physical Chemistry & Material of Construction (CH-4-G) 1.Thermodynamics

Plant extract use as corrosion. inhibitor for copper in acidic and ammoniacal medium

Potential Application of Polymer Clay Composite as Corrosion Inhibitor for Low Carbon Steel in Acidic Media

Corrosion Inhibition Studies of Ecbolium Viride Extracts on Mild Steel in HCl

Bincy Joseph, Sam John, K K Aravindakshan & Abraham Joseph*

Available online at (Elixir International Journal) Corrosion. Elixir Corrosion 38 (2011)

Research Article StudyofPbTiO 3 -Based Glass Ceramics Containing SiO 2

Accepted 5 July, 2011

ABSTRACT. ds bond and raised the hydrogen over voltage. Key words: Cyclic voltammetry, Zinc-glycine complexes, Hydrogen evolution, Thiourea

Electrochemical, Activations and Adsorption Studies for the Corrosion Inhibition of Low Carbon Steel in Acidic Media

Aniline as Corrosion Inhibitor for Zinc in Phosphoric acid.

CORROSION INHIBITORY EFFECTS OF SOME SCHIFF S BASES ON MILD STEEL IN ACID MEDIA

The Behaviour of Moraceae ficus glumosa delile as a Corrosion Inhibitor for Zinc in H 2 SO 4

Cefuroxime axetil: A commercially available drug as corrosion inhibitor for aluminum in hydrochloric acid solution

Ethoxylated fatty amines as corrosion inhibitors for carbon steel in hydrochloric acid solutions

Corrosion Inhibition by Phthalic Acid - Zn 2+ System

Evaluation Of The Protective Nature Of Schleichera oleosa Bark Extract As Green Inhibitor Of Mild Steel Corrosion In Sulphuric Acid

Corrosion Inhibition of Mild steel in 1N HCl Media by Acid Extract of Spathodea Campanulata Leaves

AdsorptionMechanismforCorrosionInhibitionofCarbonSteelonHclSolutionbyAmpicillinSodiumSalt

STANDARD GRADE CHEMISTRY : GENERAL LEVEL

Research Article Synthesis of Dendritic Silver Nanoparticles and Their Applications as SERS Substrates

Adsorption characteristics and inhibition effect of Jatropha tanjorensis leaf extracts on aluminium corrosion in hydrochloric acid solution

Corrosion and Inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole

Inhibition effects of acetyl coumarines and thiazole derivatives on corrosion of zinc in acidic medium

Polyethylene Glycol Compounds As Corrosion Inhibitors for Aluminium in 0.5M Hydrochloric Acid Solutions

Pyrazole Derivatives as Corrosion Inhibitors for Steel in Hydrochloric Acid

Research Article Size Effect and Material Property Effect of the Impactor on the Damage Modes of the Single-Layer Kiewitt-8 Reticulated Dome

Keywords: Costus afer, corrosion inhibition, Adsorption isotherm, physiosorption

GCSE CHEMISTRY REVISION LIST

Corrosion Inhibition of Steel by Various Parts of Rotula Aquatica Plant Extracts in H 2 SO 4 Solutions

composite in acetic acid

CURRICULUM-VITAE RESEARCH SPECIALIZATION. Corrosion and Corrosion Control

Stoichiometry ( ) ( )

Corrosion inhibition effect of hydroxy pyrazoline derivatives on mild steel in sulphuric acid solution together with Quantum chemical studies

NITRO ANILINE AS CORROSION INHIBITOR FOR ZINC IN NITRIC ACID

SCIENCE & TECHNOLOGY

Personalised Learning Checklists AQA Chemistry Paper 2

*Corresponding author:

Journal of Chemical and Pharmaceutical Research, 2012, 4(7): Research Article

Experimental and Theoretical Study of Some N- pyridinium Salt Derivatives as Corrosion Inhibitors for Mild-steel in 1 M H 2 SO 4

Q1. As the world population increases there is a greater demand for fertilisers.

Transcription:

International Corrosion Volume 2013, Article ID 301689, 5 pages http://dx.doi.org/10.1155/2013/301689 Research Article Inhibition of Mild Steel Corrosion in Hydrochloric Acid Solution by Ciprofloxacin Drug Inemesit A. Akpan and Nnanake-Abasi O. Offiong CorrosionandMaterialsScienceUnit,DepartmentofChemistry,UniversityofUyo,PMB1017,AkwaIbomState,Uyo520001,Nigeria Correspondence should be addressed to Inemesit A. Akpan; iaakpanchem2007@yahoo.com Received 28 March 2013; Accepted 19 May 2013 Academic Editor: Jerzy A. Szpunar Copyright 2013 I. A. Akpan and N.-A. O. Offiong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The inhibition of mild steel corrosion in hydrochloric acid solution by ciprofloxacin drug as an eco-friendly and commercially available inhibitor was studied at room temperature by weight loss technique. It was found that the test drug has a promising inhibitory action against corrosion of mild steel in the medium investigated. The inhibition efficiency was found to increase with a corresponding increase in the concentration of the inhibitor. It was also found that the adsorption as well as the inhibition process followed a first-order kinetics and obeyed Langmuir s adsorption isotherm. 1. Introduction Mild steel is extensively used in industries and as a result corrodes when exposed to various industrial environments and conditions. The application of inhibitors has been said to be amongst the most practicable ways for protection of metals against corrosion, especially in acidic media [1 3]. The inhibitive reactivity of an inhibitor is fundamentally affected by the molecular structure of the inhibiting molecules [4, 5]. Most prominent corrosion inhibitors are organic compounds containing nitrogen, sulphur, oxygen, and phosphorus in their functional groups [6 9]. The mechanism of these compounds has been proposed to be the adsorption, by means of lone pairs of electron, of the organic functional groups on the metal surfaces [10]. Furthermore, a good number of drugs are known to posses most of these qualities, and current research has been geared to identify cheap drugs, which are environmentally safe as corrosion inhibitors [11, 12]. The objective of this present work is to study the inhibition of mild steel corrosion in HCl solution by ciprofloxacin drug by weight loss method. 2. Experimental 2.1. Materials. A commercially available grade of mild steel (purity = 98% Fe) identified and obtained locally was employed in this study. The sheets of metal were mechanically press cut into coupons of 3 cm 3cm 0.1 cm dimensions. A smallholeofabout5mmdiameterneartheupperedgeof the coupons was made to help hold them with grass hooks and suspend them into the corrosive medium. The coupons were used without further polishing. However, they were degreased in acetone, washed in doubly distilled water, and stored in moisture-free desiccators before use. The inhibitor used in this study was an antibiotic drug with common name: ciprofloxacin, while its systematic name is 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)- quinoline-3-carboxylic acid. The molecular formula of the drug is C 17 H 18 FN 3 O 3 withmolecularmassof331.346g/mol. Ciprofloxacin has the chemical structure shown in Figure 1. The tablets of ciprofloxacin were obtained from a local pharmacy and were used without further purification or modification. From the mass of the drug samples and it s

2 International Corrosion O O F OH N N Weight loss (g) HN Ciprofloxacin 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 Time (days) Figure 1: Chemical structure of ciprofloxacin drug. Blank (0.1 M HCl) 0.000857 M ciprofloxacin 0.00171 M ciprofloxacin 0.00257 M ciprofloxacin molecular weight relation, appropriate concentrations of the drug were prepared by dilution. The corrosive medium used was 0.1 M solution of hydrochloric acid. It was prepared by appropriate dilution of analytical grade of the acid reagent with doubly distilled deionised water without further purification. 2.2. Weight Loss Measurements. In the weight loss experiment, five plastic containers of 250 ml capacity were labelled A to E, each containing 0.1 M of HCl solution. The first beaker was reserved as blank while each of the four remaining beakers contained the drug at different concentrations all placed at room temperature (about 30 C). The metal coupons were immersed in the experimental solutions with the help of glass hooks and monitored daily (after 24 hours). The weights of the specimens were noted before immersion. After every immersion time of 24 hours, the specimens were removed, polished with emery papers, washed in double distilled water, degreased with acetone, dried in warm air, and reweighed. Fromtheinitialandfinalweightsofthespecimens,theloss of weights was calculated, and the corrosion rate (in mpy 1 millimetre penetration per year) was computed from the following equation [13, 14]: Corrosion rate, CR = 534W DAt, (1) where W is the weight loss (g), D is the density of the specimen (7.85 g/cm 3 ), A is the surface area of specimen (cm 3 ) and t is the immersion time (days). The efficiency of the inhibitor was computed using the following equation [15 17]: Inhibition efficiency, %IE = W o W 1 W o 100, (2) where W o is the weight loss without inhibitor and W 1 is the weight loss with inhibitor. 3. Results and Discussions 3.1. Weight Loss Measurements. The inhibition of mild steel corrosion in 0.1 M solution of hydrochloric acid by a commercially available and environmentally safe antibiotic drug, ciprofloxacin, was studied at room temperature by weight loss Figure 2: Variation of weight loss with time of exposure for corrosion mild steel in 0.1 M HCl solution in absence and presence of different concentrations of inhibitors. technique. Results obtained from weight loss measurements are as shown in Table 1. The result indicates that introduction of ciprofloxacin into the corrosive medium caused a significant reduction in the corrosion of mild steel. The corrosion inhibition efficiency increased with a corresponding increase in the concentration of the inhibitor. This may have resulted due to sufficient adsorption and wider coverage by the inhibitor molecules. The calculated values for the corrosion rates (CR) are shown in Table 2. It has been observed that the corrosion rates ofthemildsteelinthecorrodentmediumwerereducedon addition of different concentrations of the inhibitor. It has also been observed from Figure 2 that the weight loss increase as the time of exposure increased. 3.2. Kinetics of Corrosion Inhibition. Chemical kinetic treatment of the data was necessary in order to obtain information about the order of the reaction. If the concentration of the corroding metallic material is estimated in terms weight loss per volume (g/l) of the corrodent, and later converted to molar concentrations via mass of metal-molar mass of iron relation, then,thekineticsofthesystemmaybeproposed.following the work of K. K. Sharma and L. K. Sharma[18], we assume that if a mol/l is the initial concentration of the mild steel (Fe) and after time t, x mol/lofmshaddecomposedinto corrosion products. Therefore, the remaining concentration of MS at time t = (a x) mol/l. If a plot of log(a x) or log [MS] against t gives a straight line graph, then the reaction canbesaidtobeafirstorderreaction.itwasbasedonthis that we calculated for the reacted concentration of MS from weight loss measurements and obtained a graph shown in Figure 3. The shape of the graph in Figure 3 shows that the system under consideration followed a first order kinetics. 3.3. Adsorption Isotherm. Since the action of corrosion inhibitors are in most cases believed to be by adsorption on the metal surface by the inhibitor molecules using their adsorption centres, it is a good practice to find out the possible adsorption mode by testing the experimental data with several adsorption isotherms. The degree of surface coverage (θ)

International Corrosion 3 Table 1: Weight loss values and calculated inhibition efficiency for mild steel corrosion in 0.1 M HCl in the presence and absence of different concentrations of inhibitors. Inhibitor concentration 1 day 2 days 3 days 4 days 5 days 6 days Weight loss IE% Weight loss IE% Weight loss IE% Weight loss IE% Weight loss IE% Weight loss IE% Blank 0.27 0.47 0.66 0.91 1.13 1.30 0.857 10 3 M 0.10 63 0.14 70 0.16 76 0.19 79 0.21 81 0.24 81 1.71 10 3 M 0.07 74 0.09 81 0.13 80 0.15 84 0.20 82 0.23 82 2.570 10 3 M 0.05 81 0.08 83 0.11 83 0.13 86 0.17 85 0.18 86 Table 2: Calculated values of corrosion rate of mild steel in 0.1 M HCl solution in absence and presence of different concentrations of inhibitors. Time (days) Corrosion rate, CR (mp/y) Blank 0.857 10 3 M 1.71 10 3 M 2.57 10 3 M 1 0.0399 0.0148 0.0103 0.0074 2 0.0347 0.0103 0.0066 0.0059 3 0.0325 0.0079 0.0064 0.0054 4 0.0340 0.0070 0.0062 0.0048 5 0.0333 0.0062 0.0059 0.0050 6 0.0320 0.0059 0.0057 0.0044 log [MS] 0 0.05 0.1 0.15 0.2 0.25 0 2 4 6 8 Time (days) Blank (0.1 M HCl) 0.000857 M ciprofloxacin 0.00171 M ciprofloxacin 0.00257 M ciprofloxacin C/θ( 10 3 ) 5 4 3 2 1 y = 0.972x + 0.5882 R 2 = 0.9956 0 0 1 2 3 4 Concentration 10 3 (M) Figure 4: Langmuir s adsorption isotherm for mild steel in 0.1 M HCl containing various concentrations of ciprofloxacin as inhibitor. Figure 3: Linear plots of log of concentration of mild steel against time. at different concentrations of the inhibitor is one of the factors considered in this test and was computed from weight loss measurements using (3)[19, 20]: θ= W o W W o, (3) where W o is the weight loss without inhibitor and W is the weight loss with inhibitor: C θ = 1 +C, (4) k where C is the concentration of the corrosion inhibitor, θ is the degree of surface coverage, and k is the adsorption equilibrium constant. On consideration of the Langmuir adsorption isotherm, which is well described by (4)[21 25], it has been found that the experimental data gave a straight line graph on a plot of C/θ versus C andfittedtheadsorptionisothermshownin Figure 4. The Langmuir isotherm assumes a monolayer adsorption of the inhibitor molecules on the metal surface [26]. 3.4. Mechanism of Inhibition. The inhibitive action of organic compounds depends of their structure and functional groups, nature of the metal, and aggressive medium [27, 28]. The inhibitory action of ciprofloxacin drug may be due to any or combination of the following mechanisms: (1) physical adsorption of the molecules on the metal surface; (2) electrostatic interactions between protonated nitrogen atoms and already adsorbed oxygen atoms; (3) coordination due to donor-acceptor interactions between the unshared electron pairs of oxygen, fluorine, and possibly nitrogen;

4 International Corrosion (4) the π-electrons from the aromatic rings may also interact with the vacant d-orbitals of the atoms of the metal at the interface; (5) since the molecular weight of the compound is large, inhibition be may also be effected by hindering of attacks by aggressive species due to wider surface covered by large molecules of the inhibitor. 4. Conclusion In the study of the inhibitory effect of an eco-friendly and commercially available antibiotic drug, ciprofloxacin, on the corrosion of mild steel in 0.1 M HCl via weight loss technique at room temperature (30 C), the following conclusions may be drawn: (1) the corrosion rate of mild steel reduced on addition of the test drug; (2) the inhibition efficiency increased with an increase in the concentration of the inhibitor; (3) the inhibition process followed a first-order kinetics; (4) the inhibition process obeyed the Langmuir adsorption isotherm. References [1] P. S. Desai and S. M. Kapopara, Inhibiting effect of anisidines on corrosion of aluminium in hydrochloric acid, Indian Journal of Chemical Technology,vol.16,no.6,pp.486 491,2009. [2] A.S.Fouda,G.Y.Elewady,andM.N.El-Haddad, Corrosion inhibition of carbon steel in acidic solution using some azodyes, Canadian Journal on Scientific and Industrial Research, vol.2,no.1,pp.1 18,2011. [3] M. Ramananda Singh, K. Bhrara, and G. Singh, The inhibitory effect of diethanolamine on corrosion of mild steel in 0.5M sulphuric acid medium, Portugaliae Electrochimica Acta, vol. 26, pp. 479 492, 2008. [4] H. Ashassi-Sorkhabi and S. A. Nabavi-Amri, Corrosion inhibition of carbon steel in petroleum/water mixtures by N- containing compounds, Acta Chimica Slovenica, vol.47,no.4, pp. 507 517, 2000. [5] I. El Ouali, B. Hammouti, A. Aouniti et al., Thermodynamic characterisation of steel corrosion in HCl in the presence of 2-phenylthieno (3, 2-b) quinoxaline, Materials and Environmental Science,vol.1,no.1,pp.1 8,2010. [6] H. P. Sachin, M. H. M. Khan, and N. S. Bhujangaiah, Surface modification of mild steel by orthophenylenediamine and its corrosion study, International Electrochemical Science,vol.4,no.1,pp.134 143,2009. [7] S. A. Umoren, U. M. Eduok, and E. E. Oguzie, Corrosion inhibition of mild steel in 1M H 2 SO 4 by polyvinyl pyrrolidone and synergistic iodide additives, Portugaliae Electrochimica Acta, vol. 26, pp. 533 546, 2008. [8] A. Kumar, Corrosion inhibition of mild steel in hydrochloric acid by Sodium Lauryl Sulfate (SLS), E- Chemistry, vol. 5, no. 2, pp. 275 280, 2008. [9] A.K.Maayta,M.M.Fares,andA.F.Al-Shawabkeh, Influence of linear alkylbenzene sulphonate on corrosion of iron in presence of magnetic field: kinetic and thermodynamic parameters, International Corrosion, vol. 2010, Article ID 156194, 9pages,2010. [10] P. M. Niamien, A. Trokourey, and D. Sissouma, Copper corrosion inhibition in 1M HNO 3 by 2-thiobenzylbenzimidazole: adsorption and chemical modeling of inhibition efficiency, International Research in Chemistry and Environment, vol. 2, no. 4, pp. 204 214, 2012. [11] S. U. Ofoegbu and P. U. Ofoegbu, Corrosion inhibition of mild steelin0.1mhydrochloricacidmediabychloroquinediphosphate, ARPN Engineering and Applied Sciences, vol. 7,no.3,pp.272 276,2012. [12] S. Hari Kumar and S. Karthikeyan, Inhibition of mild steel corrosion in hydrochloric acid solution by cloxacillin drug, Materials and Environmental Science,vol.3,no.5,pp. 925 934, 2012. [13] J. I. Bhat and V. Alva, Corrosion inhibition of aluminium by 2- chloronicotinic acid in HCl medium, Indian Chemical Technology,vol.16,no.3,pp.228 233,2009. [14] M.Abdallah,H.E.Megahed,M.A.Radwan,andE.Abdfattah, Polyethylene glycol compounds as corrosion inhibitors for aluminium in 0.5M hydrochloric acid solution, American Science,vol.8,no.11,pp.49 55,2012. [15]I.A.AkpanandN.O.Offiong, Effectofethanolamineand ethylamine on the entropy content of the corrosion of mild steel in tetraoxosulphate (VI) acid solution, Chemistry and Materials Research,vol.2,no.7,pp.40 47,2012. [16] I. A. Akpan, Inhibitory action of bile salt on the deterioration of asbestos in acid rain, Bulletin of Pure and Applied Sciences, vol.31,no.2,pp.49 58,2012. [17] B. S. Shylesha, T. V. Venkatesha, and B. M. Praveen, Corrosion inhibition studies of mild steel by new inhibitor in different corrosive medium, Research Chemical Sciences, vol. 1, no. 7, pp. 46 50, 2011. [18] K. K. Sharma and L. K. Sharma, ATextbookofPhysicalChemistry, Vikas Publishing House, New Delhi, India, 1999. [19] H.Cang,Z.Fei,J.Shao,W.Shi,andQ.Xu, Corrosioninhibition of mild steel by Aloes extracts in HCl solution medium, International Electrochemical Science, vol. 8, pp. 720 734, 2013. [20] B. M. Mistry, N. S. Patel, and S. Jauhari, Heterocyclic organic derivatives as corrosion inhibitos for mild steel in 1N HCl, Archives of Applied Science Research, vol.3,no.5,pp.300 308, 2011. [21] M. Mobin, M. Parveen, and M. Alam Khan, Inhibition of mild steel corrosion in HCl solution using amino acid L-tryptophan, Recent Research in Science and Technology,vol.3,no.12,pp.40 45, 2011. [22] M. A. Quraishi and R. Sardar, Effect of some nitrogen and sulphur based synthetic inhibitors on corrosion inhibition of mild steel in acid solutions, Indian Chemical Technology,vol.11,no.1,pp.103 107,2004. [23] L.A.Nnanna,V.U.Obasi,O.C.Nwadiuko,K.I.Mejeh,N.D. Ekekwe, and S. C. Udensi, Inhibition by Newbouldia leavis leaf extract of the corrosion of aluminium in HCl and H 2 SO 4 solutions, Archives of Applied Science Research,vol.4,no.1,pp.207 217, 2012. [24] A. A. Khadom, A. S. Yaro, A. S. Altaie, and A. A. H. Kadum, Electrochemical, activations and adsorption studies for the corrosion inhibition of low carbon steel in acidic media, Portugaliae Electrochimica Acta,vol.27,no.6,pp.699 712,2009.

International Corrosion 5 [25]O.R.M.Khalifa,A.K.Kassab,H.A.Mohamed,andS.Y. Ahmed, Corrosion inhibition of copper and copper alloy in 3M nitric acid solution using organic inhibitors, American Science, vol. 6, no. 8, pp. 487 498, 2010. [26] B. Joseph, S. John, A. Joseph, and B. Narayana, Imidazolidine- 2-thione as corrosion inhibitor for mild steel in hydrochloric acid, Indian Chemical Technology, vol. 17, no. 5, pp. 366 374, 2010. [27] S. Chitra, K. Parameswari, C. Sivakami, and A. Selvaraj, Sulpha Schiff Bases as corrosion inhibitors for mild steel in 1M sulphuric acid, Chemical Engineering Research Bulletin,vol.14, pp. 1 6, 2010. [28] R. V. Saliyan and A. V. Adhikari, Corrosion inhibition of mild steel in acid media by quinolinyl thiopropano hydrazone, Indian Chemical Technology,vol.16,no.2,pp.162 174, 2009.

Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials