VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI B.E. SYLLABUS FOR ENGINEERING PHYSICS. (Common to all Branches)

Similar documents
R.V. COLLEGE OF ENGINEERING (An autonomous institution affiliated to VTU, Belagavi) Mysore, Bangalore

DEPARTMENT OF PHYSICS

ENGINEERING PHYSICS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year ) SEMESTER - I/II

Physics-I Dr. Anurag Srivastava

PESIT-BSC Department of Science & Humanities

B.P. PODDAR INSTITUTE OF MANAGEMENT AND TECHNOLOGY COURSE INFORMATION PROGRAM: B.TECH IN CSE (A) ACADEMIC YEAR: COURSE OUTCOMES

Syllabus of Physics for B. Sc. I For Academic Year Onward for Kumaun University in Uttarakhand

COURSE CONTENT / SYLLABUS

Internal Exam Marks. Marks

B.Sc. I Year Physics Syllabus. (Revised Syllabus Effective from June 2009)

TITLE. Mechanics Practicals. Waves and Oscillation Practicals. 3 Electromagnetic Theory 3. Atomic Physics Practicals 3. Basic Electronics Practicals 3

DEPARTMENT OF PHYSICS GOVT. V.Y.T. PG. AUTONOMOUS COLLEGE DURG

TEACHING & EXAMINATION SCHEME For the Examination 2015 PHYSICS B.Sc. Part - I

GURU NANAK DEV ENGINEERING COLLEGE GILL PARK, GILL ROAD, LUDHIANA

SRI VENKATESWARA COLLEGE OF ENGINEERING (Autonomous Affiliated to Anna University)

Module A: Math. Methods, Mechanics & General properties of matter

I Semester

Credit based Syllabus PHYSICS. B. Sc. I Year Semester I & II. Effective from Academic Year June

DEPARTMENT OF PHYSICS

VALLIAMMAI ENGINEERING COLLEGE

ADVANCED PHYSICS FOR ENGINEERS (OPEN ELECTIVE) IA Marks: 20 Number of Lecture Hours/Week: 03 Total Number of Lecture Hours: 40

COURSE TITLE : THEORY OF STRUCTURES -I COURSE CODE : 3013 COURSE CATEGORY : B PERIODS/WEEK : 6 PERIODS/SEMESTER: 90 CREDITS : 6

I B.Tech Physics Syllabus (from 2013)

(Autonomous/ Affiliated to Anna University, Chennai) COIMBATORE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COWLEY COLLEGE & Area Vocational Technical School

UNIT I ELECTROSTATIC FIELDS

Uniqueness theorems, Separation of variables for Poisson's equation

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

SCSVMV UNIVERSITY,ENGINEERING PHYSICS

Provisional Syllabus of Physics-I (B. Tech. 1 st year) Theory

Unit I - Properties of Matter

TS EAMCET 2016 SYLLABUS ENGINEERING STREAM

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

LESSON PLAN EE0205 ELECTROMAGNETIC THEORY

PHYSICS LECTURES ON. 'ftt/tatt DEFINITIVE EDITION VOLUME II FEYNMAN LEIGHTON SANDS. Addison Wesley PEARSON

ENGINEERING PHYSICS Syllabus 2018 onwards

Electromagnetic Theory: PHAS3201, Winter 2008 Preliminaries D. R. Bowler drb/teaching.

SUGGESTED LESSON PLANS FOR PHY 097 SEMESTER NOV10 Text Book : PHYSICS FOR SCIENTISTS & ENGINEERS WITH MODERN PHYSICS BY GIANCOLI, FOURTH EDITION

List of Comprehensive Exams Topics

Academic Course Description BHARATH UNIVERSITY

TECHNO INDIA BATANAGAR

Chap. 1 Fundamental Concepts

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

INTRODUCTION TO ELECTRODYNAMICS

AP Goal 1. Physics knowledge

College Physics 10th edition

Micro-Syllabus of CSIT Physics

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

(MECHANICS AND THERMODYNAMICS)

Physics 4322 Spring Section Introduction to Classical Electrodynamics - Part 2

UNIT I -(ELECTROMAGNETISM AND MAGNETIC PROPERTIES OF MATERIALS)

Final Exam Concept Map

Academic Course Description

Syllabus for Bachelor of Technology. Subject Code: 01GS0101. Subject Name: Physics. B.Tech. Year - I

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT I

2426 Required Topics (May 4, 2012 draft) Halliday, FUNDAMENTALS OF PHYSICS, 9e Required topics are in bold text. Optional topics are in normal text.

TEACHER CERTIFICATION STUDY GUIDE

City University of Hong Kong. Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2016/17

Unit assessments are composed of multiple choice and free response questions from AP exams.

AP Physics C Syllabus

Knowledge of basic math concepts is expected (conversions, units, trigonometry, vectors, etc.)

GOVERNMENT COLLEGE (A) : RAJAMAHENDRAVARAM DEPARTMENT OF PHYSICS SYLLABUS FOR I

TEACHERS OF SCIENCE: Physics 9-12 FORM I-D GRID

Acropolis Technical Campus, Indore, , (M.P.) Electronics and Communications Course Plan UG Electromagnetic Field Theory

MOLECULAR SPECTROSCOPY

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

Credit Based Syllabus

ENGINEERING AND TECHNOLOGY DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY COURSE PLAN

CIRCULAR MOTION GRAVITATION ROTATIONAL MOTION

Dynamics inertia, mass, force. Including centripetal acceleration

MECHANICS OF SOLIDS Credit Hours: 6

CLASSICAL ELECTRICITY

ST. THOMAS COLLEGE, BHILAI MONTHLY TEACHING SCHEDULE,

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline

Chapter Topic Subtopic

Miami-Dade Community College PHY 2053 College Physics I

A Review of Basic Electromagnetic Theories

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

Semester System ( onwards)

Contact Hours Face to Face: 1.5 hr lecture; 1.5 hr tutorial Online: hr (pace depends on student) lecture video and assessment

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight

Bachelor of Technology Civil Engineering. 01CI0301: Mechanics of Solids

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTONOMY. FIRST YEAR B.Sc. Physics SEMESTER I

CHAPTER 7 ELECTRODYNAMICS

TENTATIVE CONTENTS OF THE COURSE # EE-271 ENGINEERING ELECTROMAGNETICS, FS-2012 (as of 09/13/12) Dr. Marina Y. Koledintseva

Classical Electrodynamics

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 )

ENGINEERING AND TECHNOLOGY DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY COURSE PLAN

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

Bachelor of Technology Civil Engineering. 01CI0301: Mechanics of Solids

B.Tech. First Semester Examination Physics-1 (PHY-101F)

D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT

Physics 610: Electricity & Magnetism I

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI B.E. SYLLABUS FOR

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Dept. of Physics, MIT Manipal 1

Transcription:

VISVESVARAYA TECHNOLOGICAL UNIVERSITY, BELAGAVI B.E. SYLLABUS FOR 2018-2022 ENGINEERING PHYSICS (Common to all Branches) (Effective from the academic year 2018-19) Course Code : 18PHY12/22 CIE Marks : 40 Contact Hours/Week : 05(3L+2T) SEE Marks: 60 Total Hours: 50 (8L+2T per module) Exams. Hours: 03 Semester: I/II Credits: 04(3:2:0) Course Learning Objectives: This course (18PHY12/22) will enable students to Learn the basic concepts in Physics which are very much essential in understanding and solving engineering related challenges. Gain the knowledge of newer concepts in modern physics for the better appreciation of modern technology MODULES MODULE-I : Oscillations and Waves Free Oscillations: Definition of SHM, derivation of equation for SHM, Mechanical and electrical simple harmonic oscillators (mass suspended to spring oscillator), complex notation and phasor representation of simple harmonic motion. Equation of motion for free oscillations, Natural frequency of oscillations. Damped and forced oscillations: Theory of damped oscillations: over damping, critical & under damping, quality factor. Theory of forced oscillations and resonance, Sharpness of resonance. One example for mechanical resonance. Shock waves: Mach number, Properties of Shock waves, control volume. Laws of conservation of mass, energy and momentum. Construction and working of Reddy shock tube, applications of shock waves. (RBT Levels L1, L2, L3) MODULE-II: Elastic properties of materials: Elasticity: Concept of elasticity, plasticity, stress, strain, tensile stress, shear stress, compressive stress, strain hardening and strain softening, failure (fracture/fatigue), Hooke s law, different elastic moduli: Poisson s ratio, Expression for Young s modulus (Y), Bulk modulus (K) and Rigidity modulus (n) in terms of and β. Relation between Y, n and K, Limits of Poisson s ratio. Bending of beams: Neutral surface and neutral plane, Derivation of expression for bending moment. Bending moment of a beam with circular and rectangular cross section. Single cantilever, derivation of expression for young s modulus Torsion of cylinder: Expression for couple per unit twist of a solid cylinder (Derivation), Torsional pendulum-expression for period of oscillation. (RBT Levels L1, L2, L3) Page 1 of 9

MODULE- III: Maxwell s equations, EM waves and Optical fibers Maxwell s equations: Fundamentals of vector calculus. Divergence and curl of electric field and magnetic field (static), Gauss divergence theorem and Stokes theorem. Description of laws of electrostatics, magnetism and Faraday s laws of EMI. Current density & equation of Continuity; displacement current (with derivation) Maxwell s equations in vacuum EM Waves: The wave equation in differential form in free space (Derivation of the equation using Maxwell s equations), Plane electromagnetic waves in vacuum, their transverse nature, polarization of EM waves(qualitative) Optical fibers: Propagation mechanism, angle of acceptance. aperture. Modes of propagation and Types of optical fibers. Attenuation: Causes of attenuation and Mention of expression for attenuation coefficient. Discussion of block diagram of point to point communication. Merits and demerits (RBT Levels L1, L2) MODULE IV: Quantum Mechanics and Lasers Quantum mechanics: Introduction to Quantum mechanics, Wave nature of particles, Heisenberg s uncertainty principle and applications (non confinement of electron in the nucleus), Schrodinger time independent wave equation, Significance of Wave function, rmalization, Particle in a box, Energy eigen values of a particle in a box and probability densities Lasers: Review of spontaneous and stimulated processes, Einstein s coefficients (derivation of expression for energy density). Requisites of a Laser system. Conditions for laser action. Principle, Construction and working of CO2 and semiconductor Lasers. Application of Lasers in Defense (Laser range finder) and Engineering (Data storage) (RBT Levels L1, L2, L3) MODULE-V: Material science Quantum Free electron theory of metals: Review of classical free electron theory, mention of failures. Assumptions of Quantum Free electron theory, Mention of expression for density of states, Fermi-Dirac statistics (qualitative), Fermi factor, Fermi level, Derivation of the expression for Fermi energy, Success of QFET. Physics of Semiconductor: Fermi level in intrinsic semiconductors, Expression for concentration of electrons in conduction band, Hole concentration in valance band (only mention the expression), Conductivity of semiconductors(derivation), Hall effect, Expression for Hall coefficient(derivation) Dielectric materials: polar and non-polar dielectrics, internal fields in a solid, Clausius- Mossotti equation(derivation), mention of solid, liquid and gaseous dielectrics with one example each. Application of dielectrics in transformers. (RBT Levels L1, L2, L3) ` Page 2 of 9

Course Outcomes: Upon completion of this course, students will be able to 1. Understand various types of oscillations and their implications, the role of Shock waves in various fields and Recognize the elastic properties of materials for engineering applications 2. Realize the interrelation between time varying electric field and magnetic field, the transverse nature of the EM waves and their role in optical fiber communication. 3. Compute Eigen values, Eigen functions, momentum of Atomic and subatomic particles using Time independent 1-D Schrodinger s wave equation 4. Apprehend theoretical background of laser, construction and working of different types of laser and its applications in different fields 5. Understand various electrical and thermal properties of materials like conductors, semiconductors and dielectrics using different theoretical models. Question paper pattern: te:- The SEE question paper will be set for 100 marks and the marks will be proportionately reduced to 60. The question paper will have ten full questions carrying equal marks. Each full question consisting of 20 marks. There will be two full questions (with a maximum of four sub questions) from each module. Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. Page 3 of 9

Sl. MODULE 1 Details ENGINEERING PHYSICS-18PHY12/22 Blow-up Syllabus (Common to all Branches) 1 1.1Free Oscillations: Definition of SHM, Characteristics, Examples and Derivation of differential equation of motion for SHM starting from Hookes law and mention its solution 2 Mechanical simple harmonic oscillator: Mass suspended to spring (vertical vibrations) - Description, Mention of Expression for time period/frequency, Definition of force constant and its significance, Derivation of expressions for force constants for series and parallel combination of springs.( and ) Dur Remarks atio n 1and on T,f and k Complex notation of simple harmonic motion (Ae i(ωt + ε) ), Phasor representation of simple harmonic motion 3 Definition of free oscillations with examples, mention the equation of motion, Natural frequency of vibration on natural frequency Qualitative discussion. 4 1.2 Damped oscillations: 1and Definition with examples. Derivation of decaying amplitude, on damping and Discussion of 3 cases viz, over damping, critical damping and quality factor underdamping. Quality factor: Definition, equation and its significance, 5 1.3 Forced oscillations: Definition with examples. Derivation of expressions for amplitude and phase of forced vibrations Discussion of 3 cases (i) p<<ω, (ii) p= ω and (iii) p>> ω Resonance: Definition, Examples, Condition for resonance 1and and expression for maximum amplitude (just mention). Sharpness of Resonance: Definition and significance, mention the effect of damping on sharpness of resonance Qualitative discussion of Examples of Resonance: Helmholtz Resonator- Description and mention of expression for resonant frequency 6 1.4 SHOCK WAVES: 1hr Definition of Mach number, classification of objects based on on Mach number Mach number (subsonic, supersonic, Transonic and hypersonic) Definition and properties of shock waves 7 Definition of control volume, Laws of conservation of mass, 1 and energy and momentum (Statement and equations) ½ hr 8 Construction and working of Reddy shock tube Applications of shock waves: Qualitative (minimum 5 applications) 9 Tutorial classes 2hr Involvement of students in respect of their doubts about the module and numerical Page 4 of 9

Sl. Details MODULE-2 1 2.1 Elasticity: Explain elasticity and plasticity. Give some examples for good elastic materials. Mention the importance (Engineering) of elastic materials. concept of stress and strain. Discuss two types of stresses namely tensile stress and compressive stress. Briefly discuss the effect of stress, temperature, annealing and impurities on elasticity 2 Strain hardening and softening: just explain what is strain hardening (strengthening of material by plastic deformation) and hardening co efficient and softening. detailed discussion of processes. 3 State and explain Hookes law, stress strain curve, elastic and plastic limits. Elastic modulus, define three different elastic moduli. Write equations for each moduli like & so on. 4 2.2 Poisson s ratio: Define lateral strain and linear strain and hence Poisson s ratio =/ (= linear strain coefficient) and (= lateral strain coefficient) 5 Relation between shear strain, longitudinal and compression strain. Show that longitudinal strain + compression strain = shear strain by considering a cubical elastic body 6 Derive the relation between Y, and Derive the relation between K, Y and 7 Derive the relation between K, and Y Dur atio n 1 and ½ hr Remarks 1hr on Y, and K 1 and 8 Discuss the limiting values of and limitations of Poisson s ratio 9 2.3 Bending of beams: Definition of beams, different types of beams and mention their Engineering applications. Definition of neutral surface/plane and neutral axis. 10 Define bending moment. Derive the expression for bending moment in terms of moment of inertia ( ) 11 Mention the expression for bending moment for circular and rectangular cross sections 12 Describe a single cantilever and hence derive the expression for Y (for rectangular beam) (only depression ) 14 2.4 Torsion of a cylinder: Twisting couple on cylindrical wire, explain torsional oscillations, derive the expression for couple per unit twist for a solid cylinder 15 Mention the expression for Time period of torsional oscillations. Brief explanation of applications of torsional pendulum 1 hr ½ hr 1 hr Page 5 of 9

16 Tutorial classes 2hr Involvement of students in respect of their doubts about the module and numerical MODULE-3 Sl Details 1 Only Cartesian co ordinates must be used in both theory and 3.1 Maxwell s equations: Fundamentals of vector calculus: Briefly explain scalar product, vector product, operation, concept of divergence, gradient and curl along with physical significance and examples like Div and curl of E and B 2 Discuss the three different types of integrations viz linear, surface and volume integrations. Derivation of Gauss divergence theorem, mention Stokes theorem 3 Explain briefly Gauss flux theorem in electrostatics and magnetism, Ampere s law, Biot-Savart s law and Faraday s laws of electromagnetic induction 4 Discuss continuity equation, definition of displacement current(i d ), expression for displacement current, Maxwell- Dura tion 1 and ½ hr ½ hr ½ hr Remarks of div and curl on (I d ) Ampere s law 5 List of four Maxwell s equations in differential form and in ½ hr vacuum 6 3.2 EM Waves: 1 and ½ Derive wave equation in terms of electric field using hr on Maxwell s equations. Mention of plane electromagnetic calculation of c waves in vacuum along with the equations for E, B and c in and on equations terms of 0 and 0 and E and B of E and B 7 Explain the transverse nature of electromagnetic waves, three types of polarization namely linear, elliptical and circular polarization of E. 8 3.3 Optical fiber: 1 and ½ Description of propagation mechanism of light through an hr on C 9 optical fiber. Angle of acceptance and numerical aperture(na): Theory with condition for propagation on angle 10 Modes of propagation and V number and types of optical of acceptance, NA fibers(qualitative) V number, modes of propagation 11 Attenuation: Definition of attenuation, name the three types 2hr of attenuation, Causes of attenuation: Explain absorption, on scattering and radiation losses. Mention the expression for attenuation attenuation coefficient 12 Application of optical fiber: Point to point communication: Explain with the help of block diagram. Merits and de merits of optical fiber communication. coefficient 13 Tutorial classes 2hr Involvement of students in respect of their doubts about the Page 6 of 9

module numerical and MODULE-4 Sl Details 1 4.1 Quantum Mechanics: Introduction to need of Quantum mechanics with a discussion of Planck s equation for energy density 2 Wave nature of particles De Broglie hypothesis followed by wavelength equations, extended to accelerated electron 3 Heisenberg s uncertainty principle-statement and mention the three uncertainty relations. Applications of uncertainty principle- to show the non confinement of electrons in the nucleus (by considering diameter of nucleus). Energy relativistic equation shall not be considered. 4 Schrodinger s time independent wave equation Setting up of Schrodinger s time independent wave equation using ψ=ae i(kx-wt). 5 Significance of Wave function qualitative statement regarding wave function, Probability density, Max born interpretation, rmalization, and Properties of wave function 6 Application Schrodinger s wave equation to particle in 1-D potential well of infinite height and obtain the energy Eigen values and eigen functions. Probability densities 7 4.2 Laser: Brief discussion of spontaneous and stimulated processes Explanation of the process of induced absorption, spontaneous and stimulated emission. 8 Einstein s coefficients (expression for energy density) derivation of energy density in terms of Einstein s co efficients 9 Requisites of a Laser system a brief explanation about active medium, resonant cavity and exciting system. 10 Conditions for laser action-to explain population inversion and meta stable state 13 Principle: mention different modes of vibrations of CO 2, explain construction and working of CO 2 laser with energy Dura Remarks tion ½ hr ½ hr 1 hr 1 hr. 1hr ½ hr 1 hr 2 hr level diagram experimental setup. 14 Principle, Construction and working of semiconductor numerical Lasers Explain principle, construction and working of homo junction semiconductor laser with energy level diagram and experimental setup. 15 Application of Lasers in Defense (Laser range finder) qualitative explanation about application of laser as laser range finder. 16 Application of Lasers in Engineering (Data storage) - qualitative explanation about application of laser in data storage (compact disc, DVD). 17 Tutorial classes 2 hrs Involvement of students in respect Page 7 of 9

of their doubts about the module and numerical MODULE-5 Sl. Details 1 5.1 Quantum free electron theory: Review of classical free electron theory (just mention who proposed it and what for it was proposed), mention the expressions for electrical conductivity based on classical free electron theory, and explain the failures of classical free electron theory (in terms of relation between conductivity and temperature, and relation between conductivity and free electron density, with specific examples) 2 Assumptions of quantum free electron theory, definition of density of states and mention the expression for density of states ( derivation) 3 Qualitative discussion of Fermi level, Fermi energy, Fermi-Dirac statistics, Fermi factor, Fermi factor at different temperatures (3 cases). 4 Derivation of the expression for Fermi energy at zero Kelvin. Mention the expression Fermi velocity and Fermi temperature. Expression for electrical conductivity in terms of Fermi velocity, mean free path and effective mass ( derivation). 5 Success of quantum free electron theory (in terms of relation between conductivity and temperature, and relation between conductivity and free electron density, with specific examples) 6 5.2 Semiconductors: Fundamentals of semiconductor. Description of Fermi level in intrinsic semiconductor. Mention of expression for electron and hole concentration in intrinsic semiconductors. Derivation of relation between Fermi energy and energy gap for an intrinsic semiconductor. 7 Derivation of the expression for electrical conductivity of semiconductors, Explanation of Hall effect with Hall voltage and Hall field, derivation of the expression for Hall coefficient. 8 5.3 Dielectrics: Fundamentals of dielectrics. Polarisation, mention the relation between dielectric constant and polarization. Types of polarization. Polar and non-polar dielectrics 9 Definition of internal field in case of solids and mention of its expression for one dimensional case. Mention the expressions for internal field for three dimensional cases and Lorentz field. Derivation of Clausius-Mossotti equation. 10 Description of solid, liquid and gaseous dielectrics with one example each. Qualitative explanation of applications of dielectrics in transformers. Dura Remarks tion ½ hr 1 and on density of states, Fermi energy, Fermi factor ½ hr on Fermi velocity, conductivity ½ hr 1hr 1 hr on conductivity, Hall effect 1 hr 1 hr on internal field and Clausius-Mossotti equation 11 Tutorial classes 2hr Involvement of students in respect of their doubts Page 8 of 9

about the module and numerical Text Books: 1. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10 th revised Ed, S. Chand & Company Ltd, New Delhi 2. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017 3. Concepts of Modern Physics-Arthur Beiser: 6 th Ed;Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006 Reference books: 1. Introduction to Mechanics MK Verma: 2 nd Ed, University Press(India) Pvt Ltd, Hyderabad 2009 2. Lasers and n Linear Optics BB laud, 3 rd Ed, New Age International Publishers 2011 3. Solid State Physics-S O Pillai, 8 th Ed- New Age International Publishers-2018 4. Shock waves made simple- Chintoo S Kumar, K Takayama and KPJ Reddy: Willey India Pvt. Ltd. New Delhi2014 5. Introduction to Electrodynamics- David Griffiths: 4 th Ed, Cambridge University Press 2017 Module wise Text Books/Reference Books Module Article Text Book/Reference Book I II III IV V 1.1 1. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017 1.2 1.3 1.4 1. Shock waves made simple- Chintoo S Kumar, K Takayama and KPJ Reddy: Willey India Pvt. Ltd. New Delhi2014 2.1 1. Engineering Physics-Gaur and Gupta-Dhanpat Rai Publications-2017 2.2 2. Introduction to Mechanics MK Verma: 2 nd Ed, University 2.3 Press(India) Pvt Ltd, Hyderabad 2009 2.4 3.1 1. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. 3.2 Kshirsagar, 10 th revised Ed, S. Chand & Company Ltd, New Delhi 3.3 2. Introduction to Electrodynamics- David Griffiths: 4 th Ed, Cambridge University Press 2017 4.1 1. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10 th revised Ed, S. Chand & Company Ltd, New Delhi 2. Concepts of Modern Physics-Arthur Beiser: 6 th Ed;Tata McGraw Hill Edu Pvt Ltd- New Delhi 2006 4.2 1. Lasers and n Linear Optics BB laud, 3 rd Ed, New Age International Publishers 2011 5.1 1. Concepts of Modern Physics-Arthur Beiser: 6 th Ed;Tata McGraw Hill 5.2 Edu Pvt Ltd- New Delhi 2006 2. Solid State Physics-S O Pillai, 8 th Ed- New Age International Publishers-2018 5.3 1. A Text book of Engineering Physics- M.N. Avadhanulu and P.G. Kshirsagar, 10 th revised Ed, S. Chand & Company Ltd, New Delhi Page 9 of 9