Extreme Optics and The Search for Earth-Like Planets

Similar documents
Extreme Optics and The Search for Earth-Like Planets

The Search for Earth-Like Planets

Searching for Earth-Like Planets:

Designing a Space Telescope to Image Earth-like Planets

EXTREME OPTICS AND THE SEARCH FOR EARTH-LIKE PLANETS. Operations Research and Financial Engineering Princeton University. Revised February 3, 2006

Optimization in Engineering Design

Making Dark Shadows with Linear Programming

High-Contrast Imaging via Pupil Masking

Eliminating Poisson s Spot with Linear Programming

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanet Detection and Characterization with Mid-Infrared Interferometry

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Recommended Architectures for The Terrestrial Planet Finder

Fast-Fourier Optimization

How Giovanni s Balloon Borne Telescope Contributed to Today s Search for Life on Exoplanets

New Worlds Observer tolerance overview ABSTRACT 1. INTRODUCTION STARSHADE

Searching for Other Worlds: The Methods

New Worlds Imager. Webster Cash, University of Colorado. W. Cash University of Colorado 1. New Worlds Imager

Properties of the Solar System

arxiv:astro-ph/ v1 2 Oct 2002

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Results from the automated Design Reference Mission constructor for exoplanet imagers

Webster Cash University of Colorado. X-ray Interferometry

Planets are plentiful

2010 Pearson Education, Inc.

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Application of Precision Deformable Mirrors to Space Astronomy

The SPICA Coronagraph

Searching for Other Worlds

arxiv:astro-ph/ v1 28 May 2003

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Design reference mission construction for planet finders

Alternative Starshade Missions

Terrestrial Planet (and Life) Finder. AST 309 part 2: Extraterrestrial Life

Terrestrial Planet Detection Approaches: Externally Occulted Hybrid Coronagraphs

Fast-Fourier Optimization

NIAC Annual Meeting New Worlds Imager. Webster Cash University of Colorado October 17, 2006

The New Worlds Observer:

Hypertelescope Optical Observatory

Active wavefront control for high contrast exoplanet imaging from space

Planet Detection! Estimating f p!

4 1 Extrasolar Planets

High Dynamic Range and the Search for Planets

Astronomy 210 Midterm #2

Final Report to the NASA Institute for Advanced Concepts March 31, 2005 Phase I Study THE NEW WORLDS IMAGER

An Optical/UV Space Coronagraph Concept for the Terrestrial Planet Finder

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Direct imaging and characterization of habitable planets with Colossus

Techniques for direct imaging of exoplanets

The Golden Era of Planetary Exploration: From Spitzer to TPF. The Observational Promise

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Selected Mission Architectures For The Terrestrial Planet Finder (TPF) : Large, Medium, and Small

The Nulling Coronagraph Using a Nulling Interferometer for Planet Detection in Visible Light with a Single Aperture Telescope

Imaging Survey for Faint Companions with Shaped Pupil Masks 1

Kirkpatrick-Baez optics for the Generation-X mission

Technology Challenges for Starshade Missions

Cheapest nuller in the World: Crossed beamsplitter cubes

Optical Interferometry Phil Hinz Image Synthesis in Interferometry

Planet Detection. Estimating f p

Lecture 12: Distances to stars. Astronomy 111

AST 101 Intro to Astronomy: Stars & Galaxies

SGL Coronagraph Simulation

Chapter 5: Telescopes

Proximity Glare Suppression for Astronomical Coronagraphy (S2.01) and Precision Deployable Optical Structures and Metrology (S2.

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets

Properties of Thermal Radiation

Introduction to Interferometer and Coronagraph Imaging

Achromatic Phase Shifting Focal Plane Masks

II Planet Finding.

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

Observations of extrasolar planets

METIS- ESA Solar Orbiter Mission: internal straylight analysis

High contrast imaging at 3-5 microns. Philip M. Hinz University of Arizona Matt Kenworthy, Ari Heinze, John Codona, Roger Angel

Pupil Replication. Frank Spaan Alan Greenaway Erwan Prot Vincent Mourai

Lecture 2. September 13, 2018 Coordinates, Telescopes and Observing

How do telescopes "see" on Earth and in space?

AST1100 Lecture Notes

Direct imaging of extra-solar planets

External Occulters for the Direct Study of Exoplanets

Today in Astronomy 328: binary stars

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

Panel Session III - Astronomical Search for Origins Program

Direct detection: Seeking exoplanet colors and spectra

How do they work? Chapter 5

Kepler, a Planet Hunting Mission

Diffraction model for the external occulter of the solar coronagraph ASPIICS

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Today in Astronomy 142

PART 3 Galaxies. Gas, Stars and stellar motion in the Milky Way

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Ay 20 Basic Astronomy and the Galaxy Problem Set 2

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

Transcription:

Extreme Optics and The Search for Earth-Like Planets Robert J. Vanderbei August 3, 2006 ISMP 2006 Rio de Janeiro Work supported by ONR and NASA/JPL http://www.princeton.edu/ rvdb

ABSTRACT NASA/JPL plans to build and launch a space telescope to look for Earth-like planets. I will describe the detection problem and explain why it is hard. Optimization is key to several design concepts.

The Big Question: Are We Alone? Are there Earth-like planets? Are they common? Is there life on some of them?

Indirect Discovery of Exosolar Planets The Radial Velocity Method About 200 exosolar planets known today. Almost all were discovered by detecting a sinusoidal doppler shift in the parent star s spectrum due to gravitationally induced wobble. This method works best for large Jupiter-sized planets with close-in orbits. Our Earth generates only a tiny wobble in our Sun s position. One of these planets, HD209458b, also transits its parent star once every 3.52 days. These transits have been detected photometrically as the star s light flux decreases by about 1.5% during a transit.

The Transit Method A few planets have been discovered using the Transit Method. On June 8, 2004, Venus transited in front of the Sun. I took a picture of this event with my small telescope. If we on Earth are lucky to be in the right position at the right time, we can detect similar transits of exosolar planets. A few exosolar planets have been discovered this way.

Terrestrial Planet Finder Telescope NASA/JPL space telescope. Launch date: 2014...well, sometime in our lifetime. DETECT: Search 150-500 nearby (5-15 pc distant) Sun-like stars for Earthlike planets. CHARACTERIZE: Determine basic physical properties and measure biomarkers, indicators of life or conditions suitable to support it.

Why Is It Hard? Contrast. Star = 10 10 Planet Angular Separation. 0.1 arcseconds. Planet

Early Design Concepts TPF-Interferometer Space-based infrared nulling interferometer (TPF-I). TPF-Coronagraph Visible-light telescope with an elliptical mirror (3.5 m x 8 m) and an optimized diffraction control system (TPF-C).

Diffraction Control via Shaped Pupils Consider a telescope. Light enters the front of the telescope the pupil plane. The telescope focuses the light passing through the pupil plane from a given direction at a certain point on the focal plane, say (0, 0). Focal plane Light cone Pupil plane However, a point source produces not a point image but an Airy pattern consisting of an Airy disk surrounded by a system of diffraction rings. These diffraction rings are too bright. planet. The rings would completely hide the By placing a mask over the pupil, one can control the shape and strength of the diffraction rings. The problem is to find an optimal shape so as to put a very deep null very close to the Airy disk.

Diffraction Control via Shaped Pupils Consider a telescope. Light enters the front of the telescope the pupil plane. The telescope focuses the light passing through the pupil plane from a given direction at a certain point on the focal plane, say (0, 0). Focal plane Light cone Pupil plane However, a point source produces not a point image but an Airy pattern consisting of an Airy disk surrounded by a system of diffraction rings. These diffraction rings are too bright. planet. The rings would completely hide the By placing a mask over the pupil, one can control the shape and strength of the diffraction rings. The problem is to find an optimal shape so as to put a very deep null very close to the Airy disk.

The Airy Pattern -0.5 Pupil Mask -20 Image (PSF) linear -10 0 0 10 0.5-0.5 0 0.5 20-20 -10 0 10 20 10 0 Image (PSF) Cross Section -20 Image (PSF) log 10-2 -10 10-4 0 10-6 10 10-8 -20-10 0 10 20 20-20 -10 0 10 20

Spiders are an Example of a Shaped Pupil Ideal Image 500 1000 1500 2000 500 1000 1500 2000 100 200 300 400 500 600 700 800 900 1000 200 400 600 800 1000 Note the six bright radial spikes Image of Vega taken with my big 250mm telescope.

The Seven Sisters with Spikes Pleiades image taken with small refractor equipped with dental floss spiders.

The Spergel-Kasdin-Vanderbei Pupil Pupil Mask Image (PSF) linear -0.5-20 -10 0 0 10 0.5-0.5 0 0.5 20-20 -10 0 10 20 10 0 Image (PSF) Cross Section -20 Image (PSF) log 10-5 10-10 -10 0 10 10-15 -20-10 0 10 20 20-20 -10 0 10 20

Telescopes Designed for High Contrast aka Coronagraphs Problem Class: Maximize a linear functional of a design function given constraints on its Fourier transform.

The Physics of Light Light consists of photons. Photons are wave packets. Diffraction is a wave property. Maxwell s equations for the Electro-Magnetic field. Wave equation for electric field (and magnetic field). Huygens wavelet model Fresnel/Fraunhofer approximation (Fourier transform!) Ray optics

Electric Field Fraunhofer Model Input: Perfectly flat wavefront (electric field is unity). Pupil: Described by a mask/tint function A(x, y). Output: Electric field E(): E(ξ, ζ) =. E(ρ) = 2π 1/2 0 e i(xξ+yζ) A(x, y)dydx J 0 (rρ)a(r)rdr, where J 0 denotes the 0-th order Bessel function of the first kind. The intensity is the magnitude of the electric field squared. The unitless pupil-plane length r is given as a multiple of the aperture D. The unitless image-plane length ρ is given as a multiple of focal-length times wavelength over aperture (f λ/d) or, equivalently, as an angular measure on the sky, in which case it is a multiple of just λ/d. (Example: λ = 0.5µm and D = 10m implies λ/d = 10mas.)

Performance Metrics Inner and Outer Working Angles ρ iwa ρ owa Contrast: E 2 (ρ)/e 2 (0) Useful Throughput: T Useful = ρiwa 0 E 2 (ρ)ρdρ.

Clear Aperture Airy Pattern ρ iwa = 1.24 T Useful = 84.2% Contrast = 10 2 ρ iwa = 748 T Useful = 100% Contrast = 10 10-0.5 Pupil Mask -20 Image (PSF) linear -10 0 0 10 0.5-0.5 0 0.5 20-20 -10 0 10 20 10 0 Image (PSF) Cross Section -20 Image (PSF) log 10-2 -10 10-4 0 10-6 10 10-8 -20-10 0 10 20 20-20 -10 0 10 20

Optimization Simple First Case: Tinted Glass Variably tinting glass is called apodization. Find apodization function A() that solves: maximize 1/2 0 A(r)2πrdr subject to 10 5 E(0) E(ρ) 10 5 E(0), ρ iwa ρ ρ owa, 0 A(r) 1, 0 r 1/2,

Optimization Simple First Case: Tinted Glass Variably tinting glass is called apodization. Find apodization function A() that solves: maximize 1/2 0 A(r)2πrdr subject to 10 5 E(0) E(ρ) 10 5 E(0), ρ iwa ρ ρ owa, 0 A(r) 1, 0 r 1/2, 50 A (r) 50, 0 r 1/2 An infinite dimensional linear programming problem.

The ampl Model for Apodization function J0; param pi := 4*atan(1); param N := 400; # discretization parameter param rho0 := 4; param rho1 := 60; param dr := (1/2)/N; set Rs ordered := setof {j in 0.5..N-0.5 by 1} (1/2)*j/N; var A {Rs} >= 0, <= 1, := 1/2; set Rhos ordered := setof {j in 0..N} j*rho1/n; set PlanetBand := setof {rho in Rhos: rho>=rho0 && rho<=rho1} rho; var E0 {rho in Rhos} = 2*pi*sum {r in Rs} A[r]*J0(2*pi*r*rho)*r*dr; maximize area: sum {r in Rs} 2*pi*A[r]*r*dr; subject to sidelobe_pos {rho in PlanetBand}: E0[rho] <= 10^(-5)*E0[0]; subject to sidelobe_neg {rho in PlanetBand}: -10^(-5)*E0[0] <= E0[rho]; subject to smooth {r in Rs: r!= first(rs) && r!= last(rs)}: -50*dr^2 <= A[next(r)] - 2*A[r] + A[prev(r)] <= 50*dr^2; solve;

The Optimal Apodization ρ iwa = 4 T Useful = 9% Excellent dark zone. Unmanufacturable. 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 0-20 -40-60 -80-100 -120-140 -160-180 -60-40 -20 0 20 40 60

Concentric Ring Masks Recall that for circularly symmetric apodizations E(ρ) = 2π 1/2 0 J 0 (rρ)a(r)rdr, where J 0 denotes the 0-th order Bessel function of the first kind. Let where A(r) = { 1 r2j r r 2j+1, j = 0, 1,..., m 1 0 otherwise, 0 r 0 r 1 r 2m 1 1/2. The integral can now be written as a sum of integrals and each of these integrals can be explicitly integrated to get: E(ρ) = m 1 j=0 1 ρ ( r 2j+1 J 1 ( ρr2j+1 ) r2j J 1 ( ρr2j ) ).

Concentric Ring Optimization Problem maximize m 1 j=0 π(r 2 2j+1 r2 2j ) subject to: 10 5 E(0) E(ρ) 10 5 E(0), for ρ 0 ρ ρ 1 where E(ρ) is the function of the r j s given on the previous slide. This problem is a semiinfinite nonconvex optimization problem.

The ampl Model for Concentric Rings function intrj0; param pi := 4*atan(1); param N := 400; # discretization parameter param rho0 := 4; param rho1 := 60; var r {j in 0..M} >= 0, <= 1/2, := r0[j]; set Rhos2 ordered := setof {j in 0..N} (j+0.5)*rho1/n; set PlanetBand2 := setof {rho in Rhos2: rho>=rho0 && rho<=rho1} rho; var E {rho in Rhos2} = (1/(2*pi*rho)^2)*sum {j in 0..M by 2} (intrj0(2*pi*rho*r[j+1]) - intrj0(2*pi*rho*r[j])); maximize area2: sum {j in 0..M by 2} (pi*r[j+1]^2 - pi*r[j]^2); subject to sidelobe_pos2 {rho in PlanetBand2}: E[rho] <= 10^(-5)*E[first(rhos2)]; subject to sidelobe_neg2 {rho in PlanetBand2}: -10^(-5)*E[first(rhos2)] <= E[rho]; subject to order {j in 0..M-1}: r[j+1] >= r[j]; solve mask;

The Best Concentric Ring Mask ρ iwa = 4 ρ owa = 60 T Useful = 9% Lay it on glass? 10 0 10-5 10-10 10-15 0 10 20 30 40 50 60 70 80 90 100

Petal-Shaped Mask 20 petals 150 petals

Ripple Masks Consider a mask consisting of an opening given by A(x, y) = { 1 y a(x) 0 else Only consider masks that are symmetric with respect to x and y axes. Hence, a() is nonnegative and even. The electric field E(ξ, ζ) is given by E(ξ, ζ) = = 4 1 2 1 2 1 2 0 a(x) a(x) e i(xξ+yζ) dydx cos(xξ) sin(a(x)ζ) dx ζ

Maximizing Throughput Because of the symmetry, we only need to optimize in the first quadrant: maximize 4 1 2 0 a(x)dx subject to 10 5 E(0, 0) E(ξ, ζ) 10 5 E(0, 0), for (ξ, ζ) O 0 a(x) 1/2, for 0 x 1/2 The objective function is the total open area of the mask. The first constraint guarantees 10 10 light intensity throughout a desired region of the focal plane, and the remaining constraint ensures that the mask is really a mask. If the set O is a subset of the x-axis, then the problem is an infinite dimensional linear programming problem.

One Pupil w/ On-Axis Constraints Spergel-Kasdin-Vanderbei Pupil ρ iwa = 4 T Useful = 43% Small dark zone...not feasible PSF for Single Prolate Spheroidal Pupil

Ripple3 Mask ρ iwa = 4 T Useful = 30% Throughput relative to ellipse 11% central obstr. Easy to make Only a few rotations

Masks from NIST

Our TPF Optics Lab

Lab Results: Theory vs. Practice Brightest pixel 1, 642, 000, 000. Sum of 21 one-hour exposures.

Optimization Success Story From an April 12, 2004, letter from Charles Beichman: Dear TPF-SWG, I am writing to inform you of exciting new developments for TPF. As part of the Presidents new vision for NASA, the agency has been directed by the President to conduct advanced telescope searches for Earth-like planets and habitable environments around other stars. Dan Coulter, Mike Devirian, and I have been working with NASA Headquarters (Lia LaPiana, our program executive; Zlatan Tsvetanov, our program scientist; and Anne Kinney) to incorporate TPF into the new NASA vision. The result of these deliberations has resulted in the following plan for TPF: 1. Reduce the number of architectures under study from four to two: (a) the moderate sized coronagraph, nominally the 4x6 m version now under study; and (b) the formation flying interferometer presently being investigated with ESA. Studies of the other two options, the large, 10-12 m, coronagraph and the structurally connected interferometer, would be documented and brought to a rapid close. 2. Pursue an approach that would result in the launch of BOTH systems within the next 10-15 years. The primary reason for carrying out two missions is the power of observations at IR and visible wavelength regions to determine the properties of detected planets and to make a reliable and robust determination of habitability and the presence of life. 3. Carry out a modest-sized coronagraphic mission, TPF-C, to be launched around 2014, to be followed by a formation-flying interferometer, TPF-I, to be conducted jointly with ESA and launched by the end of decade (2020). This ordering of missions is, of course, subject to the readiness of critical technologies and availability of funding. But in the estimation of NASA HQ and the project, the science, the technology, the political will, and the budgetary resources are in place to support this plan....

Other Issues Wavefront errors due to imperfect mirrors. Polarization effects. An 8-meter mirror is huge (Hubble is 2.4). The glow of zodiacal dust might hide a planet. Other Approaches Pupil Mapping Space-Based Petal-Shaped Occulter

A Space-Based Occulter The Complement of a Petal Mask

Vol 442 6 July 2006 doi:10.1038/nature04930 Detection of Earth-like planets around nearby stars using a petal-shaped occulter Webster Cash 1 LETTERS Direct observation of Earth-like planets is extremely challenging, because their parent stars are about 10 10 times brighter but lie just a fraction of an arcsecond away 1. In space, the twinkle of the atmosphere that would smear out the light is gone, but the problems of light scatter and diffraction in telescopes remain. The two proposed solutions a coronagraph internal to a telescope and nulling interferometry from formation-flying telescopes both require exceedingly clean wavefront control in the optics 2. An attractive variation to the coronagraph is to place an occulting shield outside the telescope, blocking the starlight before it even enters the optical path 3. Diffraction and scatter around or through the occulter, however, have limited effective suppression in practically sized missions 4 6. Here I report an occulter design that would achieve the required suppression and can be built with existing technology. The compact mission architecture of a coronagraph is traded for the inconvenience of two spacecraft, but the daunting optics challenges are replaced with a simple deployable sheet 30 to 50 m in diameter. When such an occulter is flown in formation with a telescope of at least one metre aperture, terrestrial planets could be seen and studied around stars to a distance of ten parsecs. A starshade suitable for planet hunting must be designed such that the diffracted light is minimized. This means the sum of the phases of the light from all the paths through and around the shade must be extremely close to zero, implying a wide range of phases in the focal plane. The number of extra wavelengths (ml) a ray must travel to reach the centre of the shadow around an occulter of radius R at a distance F is given by R 2 ¼ 2mlF. Noting that R/F is the angular diameter of the shade, the relation becomes R ¼ 2ml=v: For planetfinding v is 5 10 27, so a planet just 0.1 arcsec from its parent star may be detected, and in the visible band l ¼ 6 10 27 m. If m is at least 10, then to create a large range of incident phases, R must be at least 20 m. So, based only on wavelength and planet star angle, one finds that the starshade must be a large distance (R/v < 40,000 km) from the telescope. Conveniently, occulters with diameters of tens of metres can also fully shade the large (up to 10 m in diameter) telescopes suitable for studying the planets. A recent study of transmitting apertures showed it was possible to efficiently suppress diffraction over a broad spectral band to the 10 210 level very close to a stellar image 7. The results had the further key feature of being binary (either fully transmitting or fully opaque at each and every point), thus avoiding the problem of a partially transmitting sheet that would be difficult to manufacture to the needed tolerances and might reintroduce scatter. Then, a class of circularly symmetric apertures was shown to enable suppression in all directions simultaneously between some inner and outer working angles 8. These apertures could be made binary and still function well by approximating the circularly symmetric fall-off with an array of petal-shaped apertures. By numerical integration of the Fresnel diffraction equations and by subsequent mathematical derivation (provided in the Supplementary Information) I have shown there exists a class of shaping