Lecture 3: Review of Linear Algebra and MATLAB

Similar documents
Chapter 1 Vector Spaces

1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

CHAPTER 5 Vectors and Vector Space

ME 501A Seminar in Engineering Analysis Page 1

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Section 2.2. Matrix Multiplication

Introduction to Matrix Algebra

Numerical Analysis Topic 4: Least Squares Curve Fitting

Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

Chapter Gauss-Seidel Method

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

Math 1313 Final Exam Review

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

Review of Linear Algebra

Chapter Unary Matrix Operations

Mathematically, integration is just finding the area under a curve from one point to another. It is b

5 - Determinants. r r. r r. r r. r s r = + det det det

Linear Algebra Concepts

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

The formulae in this booklet have been arranged according to the unit in which they are first

CHAPTER 7 SOLVING FUZZY LINEAR FRACTIONAL PROGRAMMING PROBLEM BY USING TAYLOR'S SERIES METHOD

Stats & Summary

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Linear Algebra Concepts

CURVE FITTING LEAST SQUARES METHOD

ECE 102 Engineering Computation

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

Least squares. Václav Hlaváč. Czech Technical University in Prague

Dual-Matrix Approach for Solving the Transportation Problem

The linear system. The problem: solve

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

strt: I ths pper the trler oorte ple s stue s geerle to the -esol ule spe -ler oorte sste s estlshe The oplr theore of -pots the ourret theore of -hpe

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

A CLASS OF SINGULAR PERTURBATED BILOCAL LINEAR PROBLEMS

A Dynamical Quasi-Boolean System

Project 3: Using Identities to Rewrite Expressions

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Orthogonality, orthogonalization, least squares

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

Analyzing Control Structures

FREE Download Study Package from website: &

P a g e 3 6 of R e p o r t P B 4 / 0 9

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Section 2.3. Matrix Inverses

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Problem Set 4 Solutions

MTH 146 Class 7 Notes

Matrix- System of rows and columns each position in a matrix has a purpose. 5 Ex: 5. Ex:

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

Classification of Rational Homotopy Type for 8-Cohomological Dimension Elliptic Spaces

The Z-Transform in DSP Lecture Andreas Spanias

Available online through

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Spring Ammar Abu-Hudrouss Islamic University Gaza

Lecture 3-4 Solutions of System of Linear Equations

The z-transform. LTI System description. Prof. Siripong Potisuk

ITERATIVE METHODS FOR SOLVING SYSTEMS OF LINEAR ALGEBRAIC EQUATIONS

6.6 Moments and Centers of Mass

Sequences and summations

Chapter 12-b Integral Calculus - Extra

Systematic limits of multi reactors and detectors

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

Density estimation II

Section 3. Measurement Errors

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

TRIGONOMETRIC FUNCTIONS

The Algebraic Least Squares Fitting Of Ellipses

minimize c'x subject to subject to subject to

An Algorithm for Solving Bi-Criteria Large Scale Transshipment Problems

Strategies for the AP Calculus Exam

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

Chapter Simpson s 1/3 Rule of Integration. ( x)

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

MATH 247/Winter Notes on the adjoint and on normal operators.

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Dynamics of Structures

Pre-Calculus - Chapter 3 Sections Notes

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Censored Models. Li Gan. April, Examples of censored regression: (1) stadium attendance= min(attendance *, capacity)

Islamic University, Gaza - Palestine. Chapter 3 Experiments with a Single Factor: The Analysis of Variance

CS 4758 Robot Kinematics. Ashutosh Saxena

Numerical Differentiation and Integration

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example

T h e C S E T I P r o j e c t

Limit of a function:

LINEAR ALGEBRA APPLIED

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr.

Transcription:

eture 3: Revew of er Aler AAB Vetor mtr otto Vetors tres Vetor spes er trsformtos Eevlues eevetors AAB prmer Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst

Vetor mtr otto A -mesol (olum) vetor ts trspose re wrtte s: [ ] A (retulr) mtr ts trspose re wrtte s: A he prout of two mtres s 3 3 3 A 3 3 3 AB 3 3 3 3 3 3 3 3 3 3 33 3 3 where j k k kj Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst

Vetors he er prout (.k.. ot prout or slr prout) of two vetors s efe, k he mtue of vetor s kk k he orthool projeto of vetor oto vetor s u where vetor u hs ut mtue the sme reto s he le etwee vetors s, os wo vetors re s to e u k / k orthool f orthoorml f A set of vetors,,, re s to e lerl epeet f there ests set of oeffets,,, (t lest oe fferet th zero) suh tht + + Altertvel, set of vetors,,, re s to e lerl epeet f + + k k u θ u Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst 3

tres he etermt of squre mtr A s A k k+ k Ak ( ) where A k s the mor mtr forme remov the th row the k th olum of A E: the etermt of squre mtr ts trspose s the sme: A A he tre of squre mtr A s the sum of ts ol elemets tr(a) kk k he rk of mtr s the umer of lerl epeet rows (or olums) A squre mtr s s to e o-sulr f ol f ts rk equls the umer of rows (or olums) A o-sulr mtr hs o-zero etermt A squre mtr s s to e orthoorml f AA A AI For squre mtr A f A> for ll, the A s s to e postve-efte (.e., the ovre mtr) f A for ll, the A s s to e postve-semefte he verse of squre mtr A s eote A - s suh tht AA - A - AI he verse A - of mtr A ests f ol f A s o-sulr he pseuo-verse mtr A s tpll use wheever A - oes ot est (euse A s ot squre or A s sulr): A [ A A] A wth A A I ( ssum A A s o - sulr, ote tht AA I eerl) Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst 4

Vetor spes he -mesol spe whh ll the -mesol vetors rese s lle vetor spe A set of vetors {u, u,... u } s s to form ss for vetor spe f rtrr vetor e represete ler omto of the {u } u + u + u u 3 3 he oeffets {,,... } re lle the ompoets of vetor wth respet to the ss {u } I orer to form ss, t s eessr suffet tht the {u } vetors e lerl epeet j u A ss {u } s s to e orthool f u uj j j A ss {u } s s to e orthoorml f u uj j As emple, the Crtes oorte se s orthoorml se Gve lerl epeet vetors {,,... }, we ostrut orthoorml se {φ, φ,... φ } for the vetor spe spe { } wth the Grm-Shmt rthoormlzto Proeure he ste etwee two pots vetor spe s efe s the mtue of the vetor fferee etwee the pots u 3 u 3 - u E (,) u E(,) k hs s lso lle the Eule ste ( ) k k / u Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst 5

Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst 6 er trsformtos A ler trsformto s mpp from vetor spe X oto vetor spe Y, s represete mtr Gve vetor X, the orrespo vetor o Y s ompute s ote tht the mesolt of the two spes oes ot ee to e the sme. For ptter reoto we tpll hve < (projet oto lower-mesolt spe) A ler trsformto represete squre mtr A s s to e orthoorml whe AA A AI hs mples tht A A - A orthoorml trsformto hs the propert of preserv the mtue of the vetors: A orthoorml mtr e thouht of s rotto of the referee frme he row vetors of orthoorml trsformto form set of orthoorml ss vetors 3 3 3 A A (A) (A) j j wth j

Eevetors eevlues Gve mtr A, we s tht v s eevetor* f there ests slr λ (the eevlue) suh tht Computto of the eevlues he mtr forme the olum eevetors s lle the mol mtr Propertes Av v ( A I) Av Av A v v s eevetor Y s the orrespo v I ( A I) ( A I) 44444 44444 3 eevlue If A s o-sulr All eevlues re o-zero If A s rel smmetr All eevlues re rel he eevetors ssote wth stt eevlues re orthool If A s postve efte All eevlues wll e postve + v v3 v v v + Chrterst Equto + trvl soluto o trvl soluto Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst *he "ee-" of "eevetor" s ormll trslte s "hrterst" 7

Iterpretto of eevetors eevlues () If we vew mtr A s ler trsformto, eevetor represets vrt reto the vetor spe Whe trsforme A, pot l o the reto efe v wll rem o tht reto, ts mtue wll e multple the orrespo eevlue λ P P A P v v λ For emple, the trsformto whh rottes 3- vetors out the Z s hs vetor [ ] s ts ol eevetor s the orrespo eevlue z os A s s os v [ ] Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst 8

Iterpretto of eevetors eevlues () Gve the ovre mtr Σ of Guss struto he eevetors of Σ re the prpl retos of the struto he eevlues re the vres of the orrespo prpl retos he ler trsformto efe the eevetors of Σ les to vetors tht re uorrelte rerless of the form of the struto If the struto hppes to e Guss, the the trsforme vetors wll e sttstll epeet wth v v v fx() ( / / ep (X (X fy() ( ep ) µ v v µ µ µ Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst 9

AAB prmer he AAB evromet I/ (help ofu) Strt et AAB Cosole I/ Dretor pth he fprtf sprtf omms he strtup.m fle the put omm he help omm Fle I/ he tooloes lo sve omms Bs fetures (help eerl) he fope, flose, fprtf fsf omms Vrles D Grphs (help rph) Spel vrles (,, eps, relm, relm, p, ) he plot omm Arthmet, reltol lo opertos Customz plots Commets pututo (the semolo shorth) e stles, mrkers olors th futos (help elfu) Grs, es lels Arrs mtres ultple plots suplots Arr ostruto Stter-plots ul ostruto he lee zoom omms he : shorth 3D Grphs (help rph3) he lspe omm e plots tr ostruto esh plots ul ostruto me mes omms Cotet rrs mtres 3D stter plots Arr tr e (the olo shorth) the rotte3 omm Arr mtr opertos er Aler (help mtfu) tr elemet--elemet opertos Sets of ler equtos Str rrs mtres (ee, oes zeros) he lest-squres soluto ( A\) Arr mtr sze (sze leth) Eevlue prolems Chrter strs (help strfu) Sttsts Prolt Str eerto Geerto he strmt futo Rom vrles -fles Guss struto: (,) (µ,σ) Srpt fles Uform struto Futo fles Rom vetors Flow otrol orrelte uorrelte vrles f..else..e ostrut Alss for ostrut, m me whle ostrut Vre Covre swth..se ostrut Hstorms Itrouto to Ptter Reoto Rro Guterrez-su Wrht Stte Uverst