Predicting oil sands viscosity from well logs, NMR logs, and calculated seismic properties

Similar documents
Predicting oil sands viscosity from well logs using an industry provided dataset

Laboratory experiments and numerical simulation on Bitumen Saturated Carbonates: A Rock Physics Study for 4D Seismology

The Hangingstone steam-assisted gravity drainage

Time-lapse seismic monitoring and inversion in a heavy oilfield. By: Naimeh Riazi PhD Student, Geophysics

Velocity Measurements of Pore Fluids at Pressure and Temperature: Application to bitumen

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs

Prediction of Shale Plugs between Wells in Heavy Oil Sands using Seismic Attributes

Integrating reservoir flow simulation with time-lapse seismic inversion in a heavy oil case study

An empirical method for estimation of anisotropic parameters in clastic rocks

Delineating a sandstone reservoir at Pikes Peak, Saskatchewan using 3C seismic data and well logs

A look into Gassmann s Equation

Sensitivity of interval Vp/Vs analysis of seismic data

Time-lapse seismic modelling for Pikes Peak field

Estimating porosity of carbonate rocks using sequentially applied neural network based, seismic inversion.

Reservoir properties inversion from AVO attributes

A new model for pore pressure prediction Fuyong Yan* and De-hua Han, Rock Physics Lab, University of Houston Keyin Ren, Nanhai West Corporation, CNOOC

Introduction to Formation Evaluation Abiodun Matthew Amao

Generation of synthetic shear wave logs for multicomponent seismic interpretation

Four-D seismic monitoring: Blackfoot reservoir feasibility

Seismic characterization of Montney shale formation using Passey s approach

Feasibility study of time-lapse seismic monitoring of CO 2 sequestration

The elastic properties such as velocity, density, impedance,

Grand Rapids Oil Sands 3D Seismic Incorporating and Comparing Multiple Data Types for Reservoir Characterization

Unlocking the NMR Potential in Oil Sands

Downloaded 02/05/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

An overview of AVO and inversion

INTRODUCTION TO APPLIED GEOPHYSICS

Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran

EXTENDED ABSTRACT EVALUATING THE SHALY SAND OIL RESERVOIRS OF EL TORDILLO FIELD, ARGENTINA, USING MAGNETIC RESONANCE LOGS

SUMMARY INTRODUCTION EXPERIMENTAL PROCEDURE

Interpretation of baseline surface seismic data at the Violet Grove CO 2 injection site, Alberta

PETROPHYSICS WELL LOG INTERPRETATION

High Resolution Characterization of Reservoir Heterogeneity with Cross-well Seismic Data A Feasibility Study*

Rock physics and AVO applications in gas hydrate exploration

AFI (AVO Fluid Inversion)

APPLIED GEOPHYSICS. MS in Petroleum Engineering. Semester 1, 2018/19 COURSE COMMUNICATION FOLDER

Geological Classification of Seismic-Inversion Data in the Doba Basin of Chad*

SEG/New Orleans 2006 Annual Meeting

SPE These in turn can be used to estimate mechanical properties.

Towards Interactive QI Workflows Laurie Weston Bellman*

Synthetic seismograms, Synthetic sonic logs, Synthetic Core. Larry Lines and Mahbub Alam

Pore Pressure Prediction and Distribution in Arthit Field, North Malay Basin, Gulf of Thailand

Seismic reservoir characterization of a U.S. Midcontinent fluvial system using rock physics, poststack seismic attributes, and neural networks

Reservoir Characterization using AVO and Seismic Inversion Techniques

The SPE Foundation through member donations and a contribution from Offshore Europe

Comparison of Classical Archie s Equation with Indonesian Equation and Use of Crossplots in Formation Evaluation: - A case study

Fr Reservoir Monitoring in Oil Sands Using a Permanent Cross-well System: Status and Results after 18 Months of Production

Formation Evaluation: Logs and cores

Pre-Stack Seismic Inversion and Amplitude Versus Angle Modeling Reduces the Risk in Hydrocarbon Prospect Evaluation

Characteristics of the Triassic Upper Montney Formation (Unit C), West-Central Area, Alberta

Rock Physics Modeling in Montney Tight Gas Play

Main Menu. Summary (1)

Porosity prediction using attributes from 3C 3D seismic data

3D petrophysical modeling - 1-3D Petrophysical Modeling Usning Complex Seismic Attributes and Limited Well Log Data

Pore-Level Bénard Marangoni Convection in Microgravity

Downloaded 12/02/14 to Redistribution subject to SEG license or copyright; see Terms of Use at

Cold production footprints of heavy oil on time-lapse seismology: Lloydminster field, Alberta

Poisson's Ration, Deep Resistivity and Water Saturation Relationships for Shaly Sand Reservoir, SE Sirt, Murzuq and Gadames Basins, Libya (Case study)

Elastic impedance inversion from robust regression method

Verification of Archie Constants Using Special Core Analysis and Resistivity Porosity Cross Plot Using Picket Plot Method

Some consideration about fluid substitution without shear wave velocity Fuyong Yan*, De-Hua Han, Rock Physics Lab, University of Houston

Determination of the Laminar, Structural and Disperse Shale Volumes Using a Joint Inversion of Conventional Logs*

Rock Physics and Quantitative Wavelet Estimation. for Seismic Interpretation: Tertiary North Sea. R.W.Simm 1, S.Xu 2 and R.E.

Deterministic and stochastic inversion techniques used to predict porosity: A case study from F3-Block

Fluid-property discrimination with AVO: A Biot-Gassmann perspective

Rock Physics of Organic Shale and Its Implication

Summary. Simple model for kerogen maturity (Carcione, 2000)

Simultaneous Inversion of Clastic Zubair Reservoir: Case Study from Sabiriyah Field, North Kuwait

Azimuthal Velocity Analysis of 3D Seismic for Fractures: Altoment-Bluebell Field

Best practices predicting unconventional reservoir quality

BPM37 Linking Basin Modeling with Seismic Attributes through Rock Physics

Edinburgh Anisotropy Project, British Geological Survey, Murchison House, West Mains

AVAZ and VVAZ practical analysis to estimate anisotropic properties

We Simultaneous Joint Inversion of Electromagnetic and Seismic Full-waveform Data - A Sensitivity Analysis to Biot Parameter

Estimation of density from seismic data without long offsets a novel approach.

Well Logging Importance in Oil and Gas Exploration and Production

Fred Mayer 1; Graham Cain 1; Carmen Dumitrescu 2; (1) Devon Canada; (2) Terra-IQ Ltd. Summary

NEW SATURATION FUNCTION FOR TIGHT CARBONATES USING ROCK ELECTRICAL PROPERTIES AT RESERVOIR CONDITIONS

History matching of experimental and CMG STARS results

A031 Porosity and Shale Volume Estimation for the Ardmore Field Using Extended Elastic Impedance

A Fast Method For Estimating Shear Wave Velocity By Using Neural Network

Quantitative Seismic Interpretation An Earth Modeling Perspective

Derived Rock Attributes Analysis for Enhanced Reservoir Fluid and Lithology Discrimination

QUANTITATIVE INTERPRETATION

Unconventional reservoir characterization using conventional tools

AVO responses for varying Gas saturation sands A Possible Pathway in Reducing Exploration Risk

Petroleum Thermodynamic Research Group

QUANTITATIVE ANALYSIS OF SEISMIC RESPONSE TO TOTAL-ORGANIC-CONTENT AND THERMAL MATURITY IN SHALE GAS PLAYS

Applying Stimulation Technology to Improve Production in Mature Assets. Society of Petroleum Engineers

Determination of Duvernay Formation Reservoir Properties through Probabilistic Petrophysical Analysis calibrated to Core Studies.

Seismic Rock Physics of Steam Injection in Bituminous-oil Reservoirs

Petrophysical Study of Shale Properties in Alaska North Slope

Heriot-Watt University

PETROPHYSICAL EVALUATION CORE COPYRIGHT. Petrophysical Evaluation Approach and Shaly Sands Evaluation. By the end of this lesson, you will be able to:

Petrophysics Designed to Honour Core Duvernay & Triassic

Toward an Integrated and Realistic Interpretation of Continuous 4D Seismic Data for a CO 2 EOR and Sequestration Project

Seismic methods in heavy-oil reservoir monitoring

GPR gpr12147 Dispatch: July 15, 2014 CE: N/A Journal MSP No. No. of pages: 20 PE: George Geophysical Prospecting doi: /

A new method for multi-exponential inversion of NMR relaxation measurements

Improved Exploration, Appraisal and Production Monitoring with Multi-Transient EM Solutions

Transcription:

Predicting oil sands viscosity from well logs, NMR logs, and calculated seismic properties Eric A. Rops & Laurence R. Lines University of Calgary / CREWES Summary Viscosity is a critical parameter in determining how to optimally produce a heavy oil or oil sands reservoir. While oil viscosities can be measured in the lab from well samples, it would be very useful to have a method to reliably estimate oil sands viscosity from well logs. Donor Company has generously provided laboratory viscosity measurements from one of their major oil sands projects, with multiple measurements per well. Multi-attribute analysis enables a target attribute (viscosity) to be predicted using other known attributes (the well logs). The top well logs for predicting viscosity in this study were: resistivity, gamma ray, NMR Total - NMR Free Porosity separation, SP, P-wave sonic, and S-wave sonic. They successfully predicted viscosity with an average validation error of 69,000cP (or 0.69 of one standard deviation). The top seismic properties for predicting viscosity were: P-wave velocity and P-Impedance. They predicted viscosity with an average validation error of 94,000cP (or 0.94 of one standard deviation). The well logs detected more viscosity variations than the calculated seismic properties did. Introduction The fluid property with the greatest impact on oil sands recovery is viscosity (Batzle et al 2006). The more viscous the oil, more steam needs to be injected into the reservoir to reduce the viscosity to allow it to flow. The most viscous hydrocarbon, bitumen, is a solid at reservoir conditions and softens readily when heated. Viscosity of bitumen can range from 10,000 cp [10 Pa*s] to more than 1,000,000 cp [1,000 Pa*s] (Alboudwarej et al 2006). As the bitumen is heated, the viscosity is reduced from something resembling asphalt to something resembling coffee cream. Donor Company has generously provided viscosity measurements for one of their major oil sands projects, with three measurements per well. Figure 1 shows the distribution of the base reservoir Figure 1: Distribution of the base reservoir viscosity measurements. All the data wells are shown in red. There are significant lateral viscosity variations throughout this reservoir. GeoConvention 2017 1

viscosity measurements, with significant lateral variations evident from the data. The goal of this study is to establish a correlation between the measured viscosity values, and all of the available well log curves (including calculated seismic properties) to allow us to predict viscosity in wells that do not have lab viscosity measurements. Theory of Multi-Attribute Analysis Figure 2 illustrates the basic multi-attribute problem, showing the target log and, in this case, three attribute logs to be used to predict the target attribute (Hampson-Russell 2013). Figure 2: The basic multi-attribute regression problem showing the target log and, in this case, three attribute logs used to predict the target attribute (Hampson-Russell 2013). To illustrate the concept, suppose that viscosity is being predicted using only bulk density, gammaray, and resistivity logs. The fundamental equation of linear prediction can be written as: V(z) = w 0 + w 1 D(z) + w 2 G(z) + w 3 R(z) (1) where V(z) is viscosity in centipoise (cp), D(z) is bulk density in kg/m 3, G(z) is gamma-ray in API units, and R(z) is resistivity in ohm*m. This can be written in matrix form where each row represents a single depth sample: (2) or more compactly as: V = AW. The regression coefficients, w, can be solved for using least-squares: W = [A T A] -1 A T V (3) By using the statistical techniques of Step-Wise Regression and Cross-Validation, the best predicting attributes can be determined, as well as the optimal amount of attributes to use (Russell 2004). Data and Prediction Results In the oil sands study area, there are 78 total wells with viscosity measurements, but only 40 of those wells have all of the well log attributes available. The viscosities (measured at 35 o C) range from 9,000 cp to 541,000 cp, with an average value of 121,000 cp and standard deviation of 100,000 cp. Multi-attribute analysis determined that the best well logs for predicting viscosity were: resistivity, gamma ray, NMR Total - NMR Free Porosity separation, SP, P-wave sonic, and S-wave sonic. They successfully predicted viscosity with an average validation error of 69,000cP (or 0.69 of one standard GeoConvention 2017 2

deviation). The top seismic properties for predicting viscosity were: P-wave velocity and P-Impedance. They predicted viscosity with an average validation error of 94,000cP (or 0.94 of one standard deviation). Figure 3 and Figure 4 show the new viscosity prediction results in two examples wells. The left side of the figures show the predictions from well logs, and the right side shows the predictions from calculated seismic properties. The gold zones represent the bitumen (reservoir) intervals. The spikes in the predicted viscosity logs occur in non-reservoir intervals (shale barriers), which makes sense because the prediction is calibrated at the measurement points, which are all in reservoir intervals. The well from Figure 3 shows dynamic variations in the predicted viscosity. On the left side, the new prediction using well logs shows a shallow decreasing viscosity profile from 410m to 420m, and two separate profiles of increasing viscosity in two reservoir intervals separated by a more shaley zone (440m to 460m). The predicted viscosity closely matches the true viscosity at each of the three measurement depths. On the right side, the viscosity prediction from calculated seismic properties detects less variations than the well logs see, and does not match the base viscosity measurement as closely. Figure 3: Predicting viscosity from standard logs and NMR (left side), and calculated seismic properties (right side). Validation results for an example well are shown. The two outermost tracks show the true viscosity measurements (35 0 C) in black, with the new prediction in red overtop the old prediction in blue. The viscosity tracks are presented on logarithmic scales from 10,000cP to 1,000,000cP. The gold zones highlight the bitumen intervals. The magenta colored area is the separation between the predicted NMR Total and NMR Free porosity logs, which represents hydrocarbon contained in small pores and capillaries with poor mobility. Credit: Hampson-Russell Emerge The well from Figure 4 shows two modeled viscosity gradients predicted from well logs (left side), One from 215m to 233m, and the other from 235m to 245m. The predicted viscosity closely matches the true viscosity at each of the three measurement depths. On the right side, the viscosity prediction from calculated seismic properties detects less variation than the well logs see, but still matches the true viscosities within reason. GeoConvention 2017 3

Figure 4: Predicting viscosity from standard logs and NMR (left side), and calculated seismic properties (right side). Validation results for an example well are shown. The two outermost tracks show the true viscosity measurements (35 0 C) in black, with the new prediction in red overtop the old prediction in blue. The viscosity tracks are presented on logarithmic scales from 10,000cP to 1,000,000cP. The gold zones highlight the bitumen intervals. The magenta colored area is the separation between the predicted NMR Total and NMR Free porosity logs, which represents hydrocarbon contained in small pores and capillaries with poor mobility. Credit: Hampson-Russell Emerge Conclusions This study demonstrated that multi-attribute analysis of well logs can successfully be used to predict viscosity, given sufficient lab viscosity measurements to train the model. Viscosity estimates within about 70,000cP can be made on any well in the area assuming it has a reliable standard suite of well logs. Note that this model predicts a lab measured viscosity at 35 o C, whereas virgin reservoir viscosities are on the order of millions of cp, at around 10 o C. Calculated seismic properties were less accurate and less dynamic viscosity predictors than the well logs were. However, they were still within 100,000cP most of the time. With improved shear sonic logs in the study area, the seismic properties likely would have been more accurate. To extend viscosity prediction into the seismic world, a thick reservoir would be needed for resolution, and high frequency, prestack seismic data to extract the required elastic properties which would hopefully detect the large viscosity variations throughout the reservoir. Acknowledgements The authors would like to thank Donor Company for generously providing a large portion of their oil sands viscosity measurements to use in this study. I would also like to thank the sponsors of CREWES for their continued support during this difficult time, and NSERC (Natural Science and Engineering Research Council of Canada) through the grant CRDPJ 461179-13. The first author was also supported by an SEG/Chevron/WesternGeco scholarship from the SEG. Finally, thank-you to Bob Everett, David Gray, Rudy Strobl, Kevin Pyke, and Scott Keating for their suggestions and thoughts related to this work. GeoConvention 2017 4

References Alboudwarej, H., Felix, J., Taylor, S., Badry, R., Bremner, C., Brough, B., Skeates, C., Baker, A., Palmer, D., Pattison, K., Beshry, M., Krawchuk, P., Brown, G., Calvo, R., Triana, J., Hathcock, R., Koerner, K., Hughes, T., Kundu, D., Cardenas, J., & West, C. (2006). Highlighting heavy oil. Oilfield review, 18(2), 34-53. Archie, G. E. (1941). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54-62. Batzle, M., Hofmann, R., & Han, D. H. (2006). Heavy oils seismic properties. The Leading Edge, 25(6), 750-756. Beggs, H. D., & Robinson, J. R. (1975). Estimating the viscosity of crude oil systems. Journal of Petroleum technology, 27(09), 1140-1141. Behura, J., Batzle, M., Hofmann, R., & Dorgan, J. (2007). Heavy oils: Their shear story. Geophysics, 72(5), E175-E183. Bryan, J., Kantzas, A., & Bellehumeur, C. (2005). Oil-viscosity predictions from low-field NMR measurements. SPE Reservoir Evaluation & Engineering, 8(01), 44-52. Chopra, S., Lines, L. R., Schmitt, D.R., Batzle, M. (2010). Heavy oils: reservoir characterization and production monitoring. Society of Exploration Geophysicists. ConocoPhillips AER Annual Performance Presentation (2015). Subsection 3.1.1 (2f), p.30. Accessed on November 12, 2015. <http://www.aer.ca/documents/oilsands/insitupresentations/2015athabascaconocosurmontsagd94609426.pdf> Ellis, D. V., & Singer, J. M. (2007). Well logging for earth scientists. Springer Science & Business Media. Faust, L. Y. (1953). A velocity function including lithologic variation. Geophysics, 18(2), 271-288. Hampson-Russell (2013). Emerge: Multi-Attribute Analysis [Course notes]. Han, D. H., Liu, J., & Baztle, M. (2008). Seismic properties of heavy oils Measured data. The Leading Edge, 27(9), 1108-1115. Kato, A., Onozuka, S., & Nakayama, T. (2008). Elastic property changes in a bitumen reservoir during steam injection. The Leading Edge, 27(9), 1124-1131. Miller, K. A., Nelson, L. A., & Almond, R. M. (2006). Should you trust your heavy oil viscosity measurement? Journal of Canadian Petroleum Technology, 45(4), 42-48. Rider, M., & Kennedy, M. (2011). The Geological Interpretation of Well Logs. 3 rd Edition. Rider-French Consulting Ltd., Glasgow, Scotland. Russell, B. H. (2004). The application of multivariate statistics and neural networks to the prediction of reservoir parameters using seismic attributes. Ph.D. thesis, Department of Geoscience, University of Calgary, Calgary, AB. Shamsa, A., & Lines, L. (2014). Effect of oil composition on fluid substitution in heavy oil reservoirs. Geophysical Prospecting. Shier, D. E. (2004). Well log normalization: methods and guidelines. Petrophysics, 45(03). Sun, B., Liu, C., Menard, G., Dunn, K. J., & LaTorraca, G. A. (2007, January). Apparent hydrogen index and its correlation with heavy oil viscosity. In 48th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts. Vasheghani, F., & Lines, L. R. (2012). Estimating heavy oil viscosity from crosswell seismic data. Journal of Seismic Exploration, 21(3), 247-266. GeoConvention 2017 5