EXAFS data analysis. Extraction of EXAFS signal

Similar documents
Spettroscopia di assorbimento di raggi X

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL

Part II. Fundamentals of X-ray Absorption Fine Structure: data analysis

EXAFS. Extended X-ray Absorption Fine Structure

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

First Shell EXAFS Analysis

Solid State Spectroscopy Problem Set 7

Basics of EXAFS data analysis. Shelly Kelly Argonne National Laboratory, Argonne, IL

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

First Shell EXAFS Analysis

Basics of EXAFS Processing

An Introduction to XAFS

Molecular dynamics simulations of EXAFS in germanium

Using the Anharmonic Correclated Einstein Model for Calculation the Thermodynamic Parameters and Cumulants of Dopant Face Cubic Center Crystals

AASCIT Journal of Physics 2015; 1(2): Published online April 30, 2015 ( Nguyen Ba Duc, Nguyen Thi Lan Anh

X-ray absorption spectroscopy

Chapter 2 EXAFS structure analysis using the program XFIT

Practical approach to EXAFS Data Analysis

Chapter 1 Introduction to X-Ray Absorption Spectroscopy

3. EXAFS Data Analysis using Athena 2012 년 2 월 29 일 13:30 14:20

Muffin-tin potentials in EXAFS analysis

Disordered Materials: Glass physics

EXTENDED X-RAY ABSORPTION FINE STRUCTURE STUDY ON Bi MODIFIED GeS BULK GLASSES

X-ray diffraction is a non-invasive method for determining many types of

On the temperature dependence of multiple- and single-scattering contributions in magnetic EXAFS

Chapter 1 X-ray Absorption Fine Structure (EXAFS)

Setting The motor that rotates the sample about an axis normal to the diffraction plane is called (or ).

Comparative XAFS studies of some Cobalt complexes of (3-N- phenyl -thiourea-pentanone-2)

Korrelationsfunktionen in Flüssigkeiten oder Gasen

Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

Simulation studies of atomic resolution X-ray holography

Lecture 3. Data Analysis. Common errors in EXAFS analysis Z ± 10 N ± 1 R ± 0.02 Å

Today s Outline - April 07, C. Segre (IIT) PHYS Spring 2015 April 07, / 30

Application of X-ray Spectrometry at X-ray Absorption Edges for Investigation of Human Albumin

Quantum Mechanics II Lecture 11 ( David Ritchie

Characterization of Re-Pd/SiO 2 catalysts for hydrogenation of stearic acid

Doped lithium niobate

Fundamentals of X-ray Absorption Fine Structure

An Introduction to X- ray Absorption Spectroscopy

Atomic Motion via Inelastic X-Ray Scattering

4. Other diffraction techniques

An introduction to X-ray Absorption Fine Structure Spectroscopy

HANDS- ON TUTORIAL: FINITE DIFFERENCE METHOD CALCULATIONS FOR NEAR- EDGE AND EXTENDED RANGE X- RAY ABSORPTION FINE STRUCTURE

SUPPLEMENTAL MATERIAL

Introduction to X-ray Absorption Spectroscopy, Extended X-ray Absorption Fine Structure

Solid state physics. Lecture 2: X-ray diffraction. Prof. Dr. U. Pietsch

Superposition of electromagnetic waves

Information Content of EXAFS (I)

Lecture 10. Transition probabilities and photoelectric cross sections

Structure Refinement of Neutron and X-ray Diffraction Data on Glassy Systems for Liquid and Glassy Systems. Daniel T. Bowron

X-ray Absorption Spectroscopy

Structural characterization. Part 2

Quantitative XRF Analysis. algorithms and their practical use

Plane waves and spatial frequency. A plane wave

X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 0001

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

SUPPLEMENTARY INFORMATION

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Lecture 10. Transition probabilities and photoelectric cross sections

Electronic Supplementary Information

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011

Error Reporting Recommendations: A Report of the Standards and Criteria Committee

Chapter 4 NON-LINEAR RESPONSE OF THE TOTAL ELECTRON-YIELD SIGNAL TO THE X-RAY ABSORPTION COEFFICIENT

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

Chapter (5) Matter Waves

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

X-rays. X-ray Radiography - absorption is a function of Z and density. X-ray crystallography. X-ray spectrometry

EXAFS study of n- and p-type Ba 8 Ga 16 Ge 30

Extended X-ray Absorption Fine Structure Spectroscopy

Physical Chemistry II Exam 2 Solutions

Anharmonicity and Quantum Effect in Thermal Expansion of an Invar Alloy

Speciation of Actinides Using XAFS

Interaction X-rays - Matter

Structural characterization. Part 1

X-ray absorption spectroscopy

Atomic Motion via Inelastic X-Ray Scattering

An introduction to X-ray Absorption Spectroscopy. Sakura Pascarelli European Synchrotron Radiation Facility, Grenoble, France

Interaction theory Photons. Eirik Malinen

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

1 One-dimensional lattice

Quiz 1 XRD ) Explain the error in the following statement: "a laser beam is a focused beam of monochromatic light".

Neutron and x-ray spectroscopy

Supporting Information for. Hydrogen Activation and Metal Hydride formation Trigger Cluster Formation from Supported Iridium Complexes

NEW CORRECTION PROCEDURE FOR X-RAY SPECTROSCOPIC FLUORESCENCE DATA: SIMULATIONS AND EXPERIMENT

PH575 Spring Lecture #13 Free electron theory: Sutton Ch. 7 pp 132 -> 144; Kittel Ch. 6. 3/2 " # % & D( E) = V E 1/2. 2π 2.

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

Small-Angle X-ray Scattering (SAXS) SPring-8/JASRI Naoto Yagi

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Attenuation and dispersion

Surface Sensitive X-ray Scattering

Introduction to Waves in Structures. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Chapter 2: Complex numbers

Introduction to EXAFS data analysis. Shelly D. Kelly Argonne National Laboratory

CHAPTER 4 FOURIER SERIES S A B A R I N A I S M A I L

Anatomy of an XAFS Measurement

Chapter 2 Theory and Analysis of XAFS

EELFS SPECTROSCOPY APPLIED TO MATERIALS SCIENCE

Computer Physics Communications

Transcription:

EXAFS data analysis Extraction of EXAFS signal 1

Experimental EXAFS spectrum Φ x Φ µ (ω) source monochromator sample detectors 1 6 1 5 32 - Ge 1 4 1 3 1 2 1 1 1 1 1 Photon energy hω (kev) 1-1 Ge, 1 K µ tot x -2 11 11.5 12 Photon energy (kev) 2

Data analysis - Absorption coefficient Experimental signal 1 Ge, 1 K Extrapolation of pre-edge behaviour -1 µ tot x 1-2 11 11.5 12 Photon energy (kev) -1 µx µ tot x Specific absorption coefficient -2 11 11.5 12 Photon energy (kev) µ n x 2 1 µx 3 11 11.5 12 Photon energy (kev)

Data analysis - The EXAFS signal Atomic absorption coefficient EXAFS signal 2 µ x µx.6.3 χ (k) 1 -.3 -.6 11 11.5 12 Photon energy hν (kev) E s.6 (Å -1 ).3 k χ(k) Edge energy χ( k)= µ µ µ -.3 k = 2m h 2 ( hν E s ) Photoelectron wavenumber -.6 5 1 15 2 Photoelectron wavenumber k (Å -1 ) 4

Two distances seen by EXAFS 5

The phase s effect 6

The back-scattering function 7

Their effect on EXAFS signal 8

The Debye-Waller damping effect 9

The m.f.p. damping effect 1

Weighting the EXAFS signal 11

EXAFS signals: examples Amorphous Germanium Crystalline Germanium T = 77 K T = 77 K T = 3 K.5 χ(k) (Å -1 ) -.5 5 1 15 k (Å -1 ) 5 1 15 k (Å -1 ) 5 1 15 k (Å -1 ) 1 coord. shell Several coord. shells Temperature effect 12

Quantitative analysis χ(k) = i A i (k)sinφ i (k).5 kχ(k) Sum over: S.S. paths (coord. shells) M.S. paths -.5 5 1 15 k (Å -1 ) Input for each path: backscattering amplitude phaseshifts inelastic terms Different analysis procedures 13

EXAFS data analysis Fourier transform 14

Data analysis - Fourier Transform k r 4 k 3 χ(k) W(k) weight window F(r) = k max k min χ( k) k n W( k) e 2ikr dk -4 5 1 15 2 k (Å -1 ) 1st Ge, 1 K 2nd Modulus 3rd Peak's position and shape influenced by: - total phaseshifts - disorder - Fourier transform window Imaginary part 2 4 6 r (Å) 15

Fourier Transform and distribution σ =.5 Å EXAFS simulation (Ge phases and amplit.) σ =.1 Å 1.5 2 2.5 3 3.5 k χ(k).2 -.2 2 6 1 14 k (Å -1 ) 1.5 2 2.5 3 3.5 r(a) F.T.: k=2.5-16 K 3, square w. 16

26 - Iron: bcc structure i N i R i (Å) 1 8 2. 48 2 6 2. 86 3 12 4. 5 4 24 4. 75 5 8 4. 96 6 6 5. 73 2 3 1 Modulus of F.T. (a.u.).6.4.2 Fe (T = 3K) 1 2 3 4 5 6 r (Å) 12 24 a = 2.86 Å 8 8 Peak shift 6 6 Superposition of shells 17

29 - Copper: fcc structure i N i R i (Å) 1 12 2. 55 2 6 3. 61 3 24 4. 42 4 12 5. 1 5 24 5. 7 6 8 6. 25 2 1 4 3 Modulus of F.T. (a.u.) 12 8 4 Cu (T=4K ) 12 6 24 12 a = 3.61 Å Peak shift Focussing effect 1 4 1 2 3 4 5 6 r (Å) 18

32 - Germanium: diamond structure i N i R i (Å) 1 4 a( 3)/4 2.45 2 12 a/ 2 4. 3 12 a( 11)/4 4.69 4 6 a 5.66 5 12 a( 19)/4 6.16 6 24 a( 6)/2 6.93 4 1 3 6 5 2 Modulus of F.T. (a.u.) 6 4 2 Ge (1 K) 4 12 12 12 24 1 2 3 4 5 6 7 r (Å) 6 a = 5.66 Å 19

32-Ge: crystalline and amorphous.4 1 K c-ge 1 K a-ge k χ(k). -.4 EXAFS signals.4 3 K 3 K k χ(k). -.4 5 1 15 2 k (Å -1 ) 5 1 15 2 k (Å -1 ) Fourier transforms F(r) (arb.u.) 6 4 2 1 K 3 K c - Ge 1 K 3 K a - Ge 2 4 6 r (Å) 2 2 4 6 r (Å)

EXAFS data analysis Fourier back-transform 21

Data analysis - Fourier Back-transform r k Ge, 1 K 1st 2nd 3rd - Peak superposition - Multiple scattering - F.T. artifacts 1 2 3 4 5 6 r (Å) ( ) = ( 2 π) F( r) W' ( r) χ' k r max r min e 2ikr dr k χ(k).2 -.2 2 6 1 14 18 k (Å -1 ) 2 6 1 14 18 2 6 1 14 18 k (Å -1 ) k (Å -1 ) 22

The cumulants Cumulant expansion of EXAFS ln P(r,λ ) exp( 2ikr) dr = n= ( 2ik) n n! C n S χ( k) = 2 2 e kc sin 2 C / λ 2 1 1 f ( k) Nexp 4 3 [ kc k C +... + φ( k) ] 1 3 3 Amplitude: even C n 2 2 4 [ 2k C + k C +...] 2 3 4 exp C ( ) exp ( 2C 1 / λ) C 1 2 Normalisation Degrees of disorder Phase: odd C n C 1 = mean value C 2 = variance Position width C 2 1/2 C 3 asymmetry C 4 flatness shape C 1 23

The cumulants Degrees of disorder χ( k) = N f ( k,π ) S 2 e 2 C 1 / λ k C 1 2 exp 2k 2 C 2 ( ) exp 2 3 k 4 C 4 +... sin 2 kc 1 4 3 k 3 C 3 +... + φ (k) Harmonic approx. Standard formula C 3 = C 4 =... = Disorder exp ( 2k 2 C 2 ) exp( 2k 2 σ 2 ) (EXAFS Debye-Waller factor) Low-order anharmonic terms C 3, C 4, {C 5, C 6 } Cumulant series fastly convergent High-order anharmonic terms Cumulant series: slowly convergent... not convergent 24

EXAFS for one shell Approx.: Single Scattering Plane waves Theory (interaction potentials + scattering theory) Experiment (reference samples) Inelastic terms Back-scattering amplitude Total phase-shift χ S 2 e kc 2C / λ 1 2 4 3 ( k) = f k, π) Nexp 2k C + k C + K sin 2kC k C + K+ φ( k) 2 1 2 4 ( 2 4 1 3 4 3 Coordination number N Even cumulants C 2 C 4 Odd cumulants C 1 C 3 P (r,λ) 25

Data analysis - Independent parameters k r k r N ind = 2 k r π + 1 Maximum number of independent parameters Correlation of parameters 26

EXAFS data analysis Phase and amplitude analysis 27

Phase and amplitude χ(k) k χ( k) = A( k)sinφ( k) = 1 2i A ( k )e iφ(k) + 1 2i A ( k )e +iφ(k) 2C / λ 1 2 4 ( ) = f ( k, π) Nexp 2k C + k C + K A k 2 S e kc 2 1 2 2 4 4 Φ( k)= 2kC 1 ( 4 / 3)k 3 C 3 +...+φ( k) 2kC 1 +ϑ( k) 28

Direct Fourier transform F = ( r) k k max min = k k max min ( ) iφ( k ) iφ( k ) [ e e ] ( ) 2ik ( C + r ) + i ( k ) 2ik ( C r ) A k 2i A k 2i dk [ 1 θ 1 + iθ ( k ) e e ]dk e 2ikr < > Real F(r) for r C 1 r C 1 Imaginary r (symmetric) r (antisymmetric) 29

Inverse Fourier transform Real r Imaginary Full r-range Only r > r Real Real k k Imaginary Imaginary k k 3

Real and imaginary part Real original signal χ(k) k Complex Fourier transform F.T. artifacts A ˆ χ (k) = ˆ (k) 2i exp[ iφ ˆ (k)] Real Imaginary = 1 2 [ ] A ˆ (k) sinφ ˆ (k)+ i cosφ ˆ (k) k Complex filtered signal 31

Calculation of phase and amplitude Amplitude ˆ A (k) = 2 [ Re ˆ χ (k)] 2 + Im ˆ χ (k) [ ] 2 Total phase Φ ˆ Re ˆ χ (k) (k) = tan 1 Im ˆ χ (k) Amplitude Total phase (rad) k k A( k)= S 2 e 2C 1 /λ f (k,π) N exp 2k 2 C 2 2 + 2 C 1 4 k4 C 4 +K Φ( k)= 2kC 1 4 3 k 3 C 3 +...+φ( k)?? 32

Ratio method - phases If suitable model compound available Φ s Φ m = 2k C s m ( 1 C 1 ) 4 3 k 3 C s m ( 3 C 3 ) s = sample m = model Φ s Φ m 2k = C s m ( 1 C 1 ) 4 3 k 2 C s m ( 3 C 3 ) Φ s Φ m 2k C 1 C 3 = C 1 C 3 > k 2 k 2 33

Ratio method - amplitudes If suitable model compound available s = sample m = model ln A A s m = ln N N s m + s m 2 s m 2 4 s m ( C C ) 2k ( C C ) + k ( C C ) 2 2 3 4 4 intercept Linear slope ln As A m C 4 = C 4 > s N ln + m N s m ( C C ) k 2 k 2 34

Ratio method - results Ratio of coordination numbers N s N m C s C m = 2 C s m 1 C 1 λ 2 lnc s m [ 1 lnc 1 ] Relative values of cumulants δc i = C i s C i m δc 1 δc 2 δc 3... Thermal expansion Width Asymmetry Absolute values? Physical meaning? 35

Ratio method - OK when Only Single Scattering Only one distance Suitable reference model available χ( k) = A( k)sinφ( k) First coordination shell, one distance Same sample-model chemical environment T or p-dep. Studies Amorphous.vs. crystalline samples 1st shell, different sample-model chemical environment Separated outer shells, weak M.S. Depending on sought accuracy 1st shell in bcc structure (2 distances) Superposed outer shells M.S. contributions 36

Copper 1st shell - ratio method Phases Amplitudes 37

EXAFS data analysis Fitting with a theoretical model 38

The FeO example 39

The first shell 4

The first shell 41

The second shell 42

A free program for EXAFS data analysis 43

Loading data 44

Reading raw data 45

B.G subtraction and FT 46

Enlarged view of the edge region 47

Legend 48

Details about the FT 49

Isolation of the first shell 5

First shell BFT 51

Amplitude and phase calculation 52

BFT details with calculated amplitude and phase 53

Athena: another (free) program for EXAFS 54

BG removal 55

FT of the two samples 56

Back FT of the first shell 57

Amplitude-Phase analysis 58

Amplitude analysis: ln(n s / N m ) 59

Phase analysis : Φ s Φ m 6

The end Thank you for your attention 61