Mathematical Preliminary

Similar documents
Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Index Notation for Vector Calculus

VECTORS, TENSORS AND INDEX NOTATION

Dr. Tess J. Moon, (office), (fax),

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Physics 6303 Lecture 2 August 22, 2018

2.20 Fall 2018 Math Review

Mathematical Preliminaries

TENSOR ALGEBRA. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

A.1 Appendix on Cartesian tensors

Tensors, and differential forms - Lecture 2

2 Tensor Notation. 2.1 Cartesian Tensors

Vector analysis and vector identities by means of cartesian tensors

Math review. Math review

Useful Formulae ( )

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

EN221 - Fall HW # 1 Solutions

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces.

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

Chapter 7. Kinematics. 7.1 Tensor fields

INTRODUCTION TO CONTINUUM MECHANICS ME 36003

Classical Mechanics in Hamiltonian Form

1.13 The Levi-Civita Tensor and Hodge Dualisation

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

Section 2. Basic formulas and identities in Riemannian geometry

Physics 110. Electricity and Magnetism. Professor Dine. Spring, Handout: Vectors and Tensors: Everything You Need to Know

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

1 Index Gymnastics and Einstein Convention

NIELINIOWA OPTYKA MOLEKULARNA

L8. Basic concepts of stress and equilibrium

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR,

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics

Lecture notes on introduction to tensors. K. M. Udayanandan Associate Professor Department of Physics Nehru Arts and Science College, Kanhangad

1.4 LECTURE 4. Tensors and Vector Identities

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

CE-570 Advanced Structural Mechanics - Arun Prakash

A Primer on Three Vectors

Classical Mechanics Solutions 1.

Phys 201. Matrices and Determinants

Vectors and Matrices Notes.

Vector and Tensor Calculus

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods

1. Divergence of a product: Given that φ is a scalar field and v a vector field, show that

1 Vectors and Tensors

Introduction to Tensor Calculus and Continuum Mechanics. by J.H. Heinbockel Department of Mathematics and Statistics Old Dominion University

Contents. Physical Properties. Scalar, Vector. Second Rank Tensor. Transformation. 5 Representation Quadric. 6 Neumann s Principle

Tensor Calculus. arxiv: v1 [math.ho] 14 Oct Taha Sochi. October 17, 2016

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

CONTINUUM MECHANICS. lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern

PHY481: Electromagnetism

Tensor Analysis in Euclidean Space

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Electrodynamics. 1 st Edition. University of Cincinnati. Cenalo Vaz

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

PHY481: Electromagnetism

Matrices and Determinants

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1)

Faculty of Engineering, Mathematics and Science School of Mathematics

Professor Terje Haukaas University of British Columbia, Vancouver Notation

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with

Physical Properties. Reading Assignment: 1. J. F. Nye, Physical Properties of Crystals -chapter 1

PART 2: INTRODUCTION TO CONTINUUM MECHANICS

Basic concepts to start Mechanics of Materials

Electromagnetism HW 1 math review

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis.

Chapter 0. Preliminaries. 0.1 Things you should already know

The Matrix Representation of a Three-Dimensional Rotation Revisited

VECTOR AND TENSOR ALGEBRA

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)

Chapter 1. Describing the Physical World: Vectors & Tensors. 1.1 Vectors

A short review of continuum mechanics

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with

Chapter 3 - Vector Calculus

Introduction to relativistic quantum mechanics

Lecture 8. Stress Strain in Multi-dimension

Physics 342 Lecture 26. Angular Momentum. Lecture 26. Physics 342 Quantum Mechanics I

Contents. Part I Vector Analysis

Lecture Notes Introduction to Vector Analysis MATH 332

3D Elasticity Theory

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

1.2 Euclidean spacetime: old wine in a new bottle

On Expected Gaussian Random Determinants

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

Understand basic stress-strain response of engineering materials.

Introduction to Tensor Notation

1 Gauss integral theorem for tensors

Some elements of vector and tensor analysis and the Dirac δ-function

Problem Set 4. Eshelby s Inclusion

Lecture 4: Products of Matrices

MATH45061: SOLUTION SHEET 1 V

Newman-Penrose formalism in higher dimensions

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Tensors and Special Relativity

CVEN 5161 Advanced Mechanics of Materials I

A Brief Introduction to Tensors

Linear Algebra (Review) Volker Tresp 2017

Transcription:

Mathematical Preliminary

Outline Scalar, Vector and Matrix( 标量 矢量 矩阵 ) Indicial Notation and Summation Convention( 指标记法与求和约定 ) Kronecker Delta( 克罗内克 δ) Levi-Civita symbol( 轮换记号 ) Coordinate Transformation( 坐标变换 ) Tensor( 张量 ) Principal Values and Directions( 特征值与特征向量 ) Tensor Algebra( 张量代数 ) Tensor Calculus( 张量微分 ) Integral Theorems( 积分定理 ) Cylindrical and Spherical Coordinates( 柱与球坐标 )

Scalar Scalar: representing a single magnitude at each point in space Examples: Material density Young s modulus Poisson s ratio Shear modulus Temperature 3

Vector Vector: representing physical quantities that have both magnitude and direction Examples: Force Displacement of material points Rotation of material points 4

Matrix (Array) Matrix: a rectangular array of numbers Array: a data structure in which similar elements of data are arranged in a table 5

Indicial Notation Orthogonal unit vectors: Vector decomposition: a OP a i i a j j a k k 3 1 3 1 3 i1 a e a e a e a e i i j k i e 1 =i x =x 1 O z =x 3 Indicial notation: a shorthand scheme whereby a whole set of components is represented by a single symbol with subscripts k=e 3 a j=e x1 e1 a1 a11 a1 a13 xi x, ei e, ai a, aij a1 a a 3 x e a a a a 3 3 3 3 3 33 P y=x 6

Indicial Notation Addition and subtraction Scalar multiplication Outer multiplication 7

Indicial Notation Commutative, associative and distributive laws Equality of two symbols a1 b1 a11 b11 a1 b1 a13 b13 ai bi a b, aij b ij a1 b1 a b a3 b 3 a b a b a b a b Avoid 3 3 31 31 3 3 33 33 a b, a b i j ij kl 8

Summation Convention Summation convention: if a subscript appears twice in the same term, then summation over that subscript from one to three is implied a x x 3 3 a x x ij i j ij i j i1 j1 a a a ii jj kk In a single term, no index can appear more than twice. Dummy (repeated) indices vs. free (distinct) indices Among terms, index property must match. 9

Contraction and Symmetry Contraction: for example, a ii is obtained from a ij by contraction on i and j Outer multiplication contraction inner product a b contraction on i j i i a b contraction on ij a b ij kl ik kl jk a b Symmetric vs. antisymmetric (skewsymmetric) w.r.t. two indices, i.e. m and n Useful identity: 10

Kronecker Delta Kronecker delta: a useful special symbol commonly used in index notational schemes Symmetric Replacement property 11

Levi-Civita (Permutation) Symbol Antisymmetric w.r.t. any pair of its indices Cross product of two vectors a b a e b e a b e e a b e a b e i i j j i j i j i j ijk k ijk i j k Scalar triple product of three vectors abc a b e c e a b c e e a b c a b c ijk i j k m m ijk i j m k m ijk i j m km ijk i j k 1

Levi-Civita (Permutation) Symbol Determinant of a matrix (easily verifiable) a a a 11 1 13 det aij aij a1 a a3 ijka1 ia ja3k ijkai1a jak 3 a a a 3 3 33 By the definition of Levi-Civita and note the following a a a a a a a a a a a a ijk rst ir js kt ijk i1 j k 3 ijk i1 j3 k ijk i j3 k1 a a a a a a a a a ijk i j1 k 3 ijk i3 j1 k ijk i3 j k1 ijk rstaira jsakt 6det aij, ijkaila jmakn lmn det aij 13

Levi-Civita (Permutation) Symbol ε-δ property T A B A B AB i1 i i3 ijk i j k ip p jq q kr r ijk j1 j j3 ijk pqr T e e e e e e k1 k k 3 k1 k k 3 p3 q3 r3 km i1 i i3 p1 q1 r1 im pm im qm im rm j1 j j3 p q r jm pm jm qm jm rm pm km qm km rm ip iq ir ip iq ik ijk pqr jp jq jr ijk pqk jp jq jk ip jq iq jp kp kq kr kp kq kk 14

Sample Problem The matrix a ij and vector b i are specified by 1 0 aij 0 4 3, b i 4 1 0 Determine the following quantities, and indicate whether they are a scalar, vector or matrix. a, a a, a a, a b, a bb, bb, bb, a, a ii ij ij ij jk ij j ij i j i i i j Solution: a a a a 7 (scalar) ii ij ij 11 33 symm. a a a a a a a a a a a a a a a a a a a a anti. 11 11 1 1 13 13 1 1 3 3 31 31 3 3 33 33 1 4 0 0 16 9 4 1 4 39 (scalar) 15

Sample Problem - Solution 1 10 6 aija jk ai1a1 k ai ak ai3a3k 6 19 18 (matrix) 6 10 7 10 aijbj ai 1b1 ai b ai3b3 16 (vector) 8 a b b a b b a b b a b b a b b 84 (scalar) ij i j 11 1 1 1 1 13 1 3 1 1 b b b b b b b b 4 16 0 0 (scalar) i bb i i j 1 1 3 3 4 8 0 8 16 0 (matrix) 0 0 0 1 0 1 0 1 1 1 1 1 1 asymm. aij a ji 0 4 3 4 1 1 4 (matrix) 1 0 3 1 1 0 1 0 0 1 1 1 1 1 aanti. aij a ji 0 4 3 4 1 1 0 1 (matrix) 1 0 3 1 1 0 16

Coordinate Transformation Unit base vectors for each frame e e,e,e ; e e,e,e i 1 3 i 1 3 Transformation matrix Q cos( x, x ) ij i j e Q e Q e Q e 1 11 1 1 13 3 e Q e Q e Q 1 1 3 3 e Q e Q e Q e 3 31 1 3 33 3 Relations between base vectors e Q e ; e Q e i ij j i ji j e 17

Coordinate Transformation Transformation between vectors ν e e e e e e e e 1 1 3 3 i i 1 1 3 3 i i i Qij j; i Qji j Property of transformation matrix T i Q ji j Q jiq jk k Q jiq jk ik Q Q I T Q Q Q ; Q Q QQ i ij j ij kj k ij kj ik I det Q ij 1 For right-handed coordinates det Q ij 1 18

Sample Problem The components of a first and second order tensor in a particular coordinate frame are given by a i 1 1 0 3 4, aij 0 3 4 Determine the components of each tensor in a new coordinate system found through a rotation of 60 o about the x 3 -axis. Choose a counterclockwise rotation when viewing down the negative x 3 -axis. 19

Sample Problem - Solution Q ij cos60 cos30 cos90 1 3 0 cos150 cos 60 cos 90 3 1 0 cos 90 cos 90 cos 0 0 0 1 1 3 0 1 1 3 a i Qij a j 3 1 0 4 3 0 0 1 1 3 0 1 0 3 1 3 0 a ij QipQjqapq 3 1 0 0 3 1 0 0 0 1 3 4 0 0 1 7 4 3 4 3 3 3 4 5 4 13 3 3 3 13 3 4 0

Tensor - Definition Those matrices that satisfy the following rule are called second-order tensors. A Akl ekel Akl Qkie i Qlje j QkiQlj Akl eiej Aij eiej A Q Q A A Q Q A ij ki lj kl ij ik jl kl Exceptional matrices do exist, i.e. Spinors( 旋量 ) Fortunately, this is not our concern. 1

Tensor - Definition A tensor can be any order and must satisfy For general order A Q Q Q Q A ijkl im jn ko lp mnop A Q Q Q Q A ijkl mi nj ok pl mnop

Isotropic Tensors Defined as those tensors whose components remain the same under all transformations All scalars (zero order) are isotropic No non-trivia isotropic tensor of the first order Kronecker Delta is the most general second order isotropic tensor T ij ij T Q Q T Q Q Q Q T ij ik jl kl ik jl kl ik jk ij ij 3

Isotropic Tensors Levi-Civita Symbol is the most general third order isotropic tensor det a a a a T ijk det 1m n 3o mno m1 n o3 mno a ijk im jn ko mno ijk a a a a a a T Q Q Q T Q Q Q det Q T ijk im jn ko mno im jn ko mno ijk ijk The most general fourth order isotropic tensor T ijkl ij kl ik jl il jk T Q Q Q Q T Q Q Q Q ijkl im jn ko lp mnop im jn ko lp mn op mo np mp on Q Q Q Q Q Q Q Q Q Q Q Q T im jm ko lo im jn km ln im jn kn lm ijkl 4

Tensor Algebra The distinction between a tensor and its components Equality of two tensors: Addition/subtraction Scalar multiplication: A A i e Cross product of two vectors Triple product of three vectors A B Ae Be A B i i i i i i i 5

Tensor Algebra Tensor product (outer multiplication ) A B Ae B e A B e e A B e e i i j j i j i j i j i j Contraction on a pair of indices (Tensor product inner product) A B Ae B e A B e e A B i i j j i j i j i i Generalized inner product (matrix product) 6

Principal Values and Directions - D For the state of plane stress shown, determine the principal stresses and principal directions. Solution 1. Principal stresses. Principal directions 50 40 n1 0 40 10 n 0 50 40 0 50 10 1600 0 40 10 40 100 0 70, 30 1 50 70 40 n1 0 0 40 n1 0 n1 5 1 40 10 70 n n n 0 40 80 n 0 n 1 5 1 50 30 40 n1 0 80 40 n1 0 n1 5 n n1 40 10 30 n 0 40 0 n 0 n 5 7

Principal Values and Directions - 3D For the state of 3-D stress shown, determine the principal stresses and principal directions. 0 10 0 n 0 Solution 1. Principal stresses: z y 0MPa 0MPa I I I 1 3 10MPa 0MPa x 0 0 0 60 x y z x y y z z x xy yz zx 1 10 0 0 n 0 0 0 0 n 3 0 det ij ij 0 3 I1 I I3 0 30, 0, 10. 1 1 1 400 400 400 100 1100 x y z xy yz zx x yz y zx z xy 8000 000 6000. Principal directions: 0 10 0 n 0 1 10 0 0 n 0 0 0 0 n 3 0 8

Tensor Field and Comma Notation The field concept of a tensor component The Comma Notation for partial differentiation Gradient operator: Laplacian operator: Gradient of a scalar: Laplacian of a scalar: e e e e x x x x 1 3 1 3 ei e j xi x j xixi e e x i i, i i xx i i, ii i i 9

Tensor Calculus d dx1 dx dx3 Directional derivative: n e1 e e3 e1 e e3 ds x1 x x3 ds ds ds Gradient of a vector: Divergence of a vector: Gradient of a tensor: Divergence of a tensor: Curl of a vector: Laplacian of a vector: u ue e u e e u e e i i i j i j i, j i j x j xj u e j x u e u u j i i i, j ij i, i σ e e e e e e e e e ij ij i j k i j k ij, k i j k xk xk ij σ e e e e e e e xk k ij i j k i j ij, i j xk u k u e j u k x ek ijkei ijkuk, jei j x j u ukek uk, iiek xixi 30

Useful Identities All can be proved with Indicial and Comma Notations. 31

Sample Problem Scalar and vector field functions are given by n by x y and u xe1 3yze xye 3., Calculate u, u, the following u. expressions: ns are given by x y and u xe1 3yze xye 3 sions,,, u, u, u. s (1.8.4) Solution xe ye 0 u u 3z 0 3z u ii, 1 0 0 ui, jeiej 0 3z 3y y x 0. u e u e u e x i j j kij j, i k u u u u u u 1 3,,3 1,3 3,1 3,1 1, x 3y e y 1 i e e e e 3

Integral Theorems Gauss (Divergence) theorem S S u nds udv ; u n ds u dv. V k k k, k V Stokes theorem C C k k ijk k, j i S u dr u nds; S u dx u n ds. Green s theorem on a plane C u dx u dx u u dx dx. 1 1,1 1, 1 S 33

Cylindrical Coordinates 1 y x r cos, y r sin, r x y, tan x r sin r cos cos,, sin, x x r y y r r sin cos x r x x r r r cos sin y r y y r r er cos sin 0 ex excos eysin sin cos 0 e ey exsin eycos e z 0 0 1 ez ez er e e, er 34

Cylindrical Coordinates cos sin 0 x 1 c sin cos 0 Q er e ez y r r z 0 0 1 z 1 uc u e u e u e e e e r r z r r z z r z ur 1 ur ur erer u ere erez r r z u 1 u u ee r ur ee ee r r z uz 1 uz uz ezer eze ezez r r z z 35

Cylindrical Coordinates Double gradient of a scalar (symmetric as expected) 1 er e ez r r z 1 e rer ere erez r r r rz 1 1 1 1 eer r r r r r e e e e r z 1 ezer eze e ze z rz r z z z 36

Cylindrical Coordinates 1 c u er e e z urer u e uze z r r z ur ur 1 u uz r r r z 1 c u er e e z urer u e uze z r r z 1 uz u ur uz u 1 ur 1 er e e z u r z z r r r r 1 1 c er e ez er e e z r r z r r z 1 1 r r r r z 37

Cylindrical Coordinates rerer re re rzerez reer ee 1 σ r z z z zr z r z z e e e e e e e e e zezez r r z r r rz r ererer ereer ere zer eerer eeer r r r r r z zr z z ee zer e zerer e zeer e ze zer r r r r 1 r r r 1 r r 1 rz z erere ere e ere ze r r r r r r 1 r r 1 r r 1 z rz e ere e e e e e ze r r r r r r 1 zr z 1 z zr 1 z ezere e zee e ze ze r r r r r r r rz r ererez eree z ere ze z eere z eee z z z z z z z zr z z ee ze z e zere z e zee z e ze ze z z z z z 38

Cylindrical Coordinates Gradient of a tensor: Divergence of a tensor: σ e e e e e e e e e ij ij i j k i j k ij, k i j k xk xk ij σ e e e e e e e xk k ij i j k i j ij, i j xk σ contraction on the first and third index of σ r 1 r zr r σ er r r z r r 1 z r r e r r z r rz 1 z z rz e z r r z r 39

Cylindrical Coordinates er e er e e er e, er, e, r e ur ur ur urer ure er, urer er e u rer u u e e u u u e e u e e r u e 1 1 c r r r r z u u e u e u e r r z z u u u u u e u e u e r r r r r r c r r c c z z 40

Cylindrical Coordinates er e er e e, er, e, r e 1 1 r r r r r rz r z r r cσ r r r z r zee z zrezer z eze zezez e e e e e e e e e e r r r r r r r r r ee r r ee 1 e e r e e r e e r z z z z r r r r rz rz r z r 1 rz r r r r z r ee r 1 1 r e e r e e z zr zr zr z r z z z The Laplacian is symmetric if the tensor is. z ee z 41

Spherical Coordinates 1 r z R cos, r Rsin, R z r, tan z R sin R cos cos,, sin, z z R r r R R sin cos z R z z R R R cos sin r R r r R R er cos sin 0 ez siner cosez sin cos 0 e er coser sinez e 0 0 1 e e e e R e e R e e, er, sin e, cos e, siner cose e sine cose r R 4

Spherical Coordinates cos sin 0 z R 1 s c sin cos 0 Q r R 0 0 1 1 1 r Rsin 1 1 us urer u e u e er e e R R R sin u R 1 u u R 1 ur u erer ere ee R R R R R sin R u ur 1 u cotu 1 u e er e e e e R R R R R sin u 1 u u 1 cot u R u eer ee ee R R R Rsin R 43

Spherical Coordinates 1 1 s u er e e urer u e u e R R R sin u cot u R u R 1 u 1 u R R R R R sin 1 1 s u er e e urer u e u e R R R sin 1 u cot u 1 u e R R Rsin 1 ur u u 1 u u R u e e Rsin R R R R R 1 1 1 1 s er e e er e e R R R sin R R R sin cot 1 1 R R R R R R sin R 44

ReReR Re Re R ere ReeR ee 1 1 σ R R R e e e e e e e e e e e R R Rsin Spherical Coordinates R R R R R ererer ereer ereer eerer eeer eeer eerer R R R R R R R 1 R R R 1 R R 1 R eee R ee er erere eree eree R R R R R R R R 1 R R 1 R R 1 R 1 R eere eee eee eere R R R R R R R R 1 1 1 1 R cot R R R R R e e e e e e erere ere e R R R R sin R R sin R 1 R cot R 1 R cot R R eree eere Rsin R Rsin R cot 1 cot 1 R e e e e e e Rsin R Rsin R 1 cot 1 R cot R R R e ere e e e Rsin R R R sin R 1 R R cot Rsin R eee 45

Spherical Coordinates Gradient of a tensor: Divergence of a tensor: σ e e e e e e e e e ij ij i j k i j k ij, k i j k xk xk ij σ e e e e e e e xk k ij i j k i j ij, i j xk σ contraction on the first and third index of σ 1 cot R R 1 R R R σ er R R R sin R 1 1 R R cot R e R R R sin R 1 1 R R cot R R R R sin R e 46

Spherical Coordinates e e R e e R e e, er, sin e, cos e, sine R cose e e R e, R e e e R e sin e sin, cos, R cose sin e R cos e e R R R R R R sin cot 1 1 s u urer ue u e u cotu R u u sur e R R R R sin u u R cot u su e R R sin R sin u cot u ur su e R sin R sin R sin R 47

Outline Scalar, vector and matrix( 标量 矢量 矩阵 ) Indicial notation and summation convention( 指标记法与求和约定 ) Kronecker delta( 克罗内克 δ) Levi-Civita symbol( 轮换记号 ) Coordinate transformation( 坐标变换 ) Tensor( 张量 ) Principal values and directions( 特征值与特征向量 ) Tensor algebra( 张量代数 ) Tensor calculus( 张量微分 ) Integral theorems( 积分定理 ) Cylindrical and Spherical Coordinates( 柱与球坐标 ) 48