Florentin Smarandache, Mircea Eugen Șelariu 1. INTRODUCTION

Similar documents
BROKEN LINES SIGNALS AND SMARANDACHE STEPPED FUNCTIONS

ECCENTRICITY, SPACE BENDING, DIMENSION

SMARANDACHE STEPPED FUNCTIONS

Florentin Smarandache, Mircea Eugen Şelariu ECCENTRICITY, SPACE BENDING, DIMMENSION ECCENTRICITY, SPACE BENDING, DIMMENSION

SET 1. (1) Solve for x: (a) e 2x = 5 3x

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Solutions for homework 5

1) SIMPLE HARMONIC MOTION/OSCILLATIONS

Differential Equations: Homework 8

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

Chapter 5 Notes. 5.1 Using Fundamental Identities

Problem 1 : Solution/marking scheme Two Problems in Mechanics (10 points)

Examiner: D. Burbulla. Aids permitted: Formula Sheet, and Casio FX-991 or Sharp EL-520 calculator.

6.1 The Inverse Sine, Cosine, and Tangent Functions Objectives

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Chap. 15: Simple Harmonic Motion

Solution Set Five. 2 Problem #2: The Pendulum of Doom Equation of Motion Simple Pendulum Limit Visualization...

3. Use absolute value notation to write an inequality that represents the statement: x is within 3 units of 2 on the real line.

MA40S Pre-calculus UNIT C Trigonometric Identities CLASS NOTES Analyze Trigonometric Identities Graphically and Verify them Algebraically

Solutions 2: Simple Harmonic Oscillator and General Oscillations

Inverse Trig Functions

EFFECTS OF AVERAGING ON SODE MODELS OF DYNAMIC CELL PROCESSES

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

5, tan = 4. csc = Simplify: 3. Simplify: 4. Factor and simplify: cos x sin x cos x

MTH 112: Elementary Functions

Math Assignment 5

Chapter 11 Vibrations and Waves

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

Find all solutions cos 6. Find all solutions. 7sin 3t Find all solutions on the interval [0, 2 ) sin t 15cos t sin.

Chapter 14 (Oscillations) Key concept: Downloaded from

MATH 127 SAMPLE FINAL EXAM I II III TOTAL


Symmetries 2 - Rotations in Space

F = ma, F R + F S = mx.

There are some trigonometric identities given on the last page.

AP Calculus (BC) Chapter 10 Test No Calculator Section. Name: Date: Period:

Chapter 5 Trigonometric Functions of Angles

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

MTH 112: Elementary Functions

Trigonometry LESSON SIX - Trigonometric Identities I Lesson Notes

Multiple Choice Answers. MA 114 Calculus II Spring 2013 Final Exam 1 May Question

MATH 415, WEEKS 7 & 8: Conservative and Hamiltonian Systems, Non-linear Pendulum

MATH 32 FALL 2012 FINAL EXAM - PRACTICE EXAM SOLUTIONS

A-Level Mathematics TRIGONOMETRY. G. David Boswell - R2S Explore 2019

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.

3.4 Application-Spring Mass Systems (Unforced and frictionless systems)

Math 120: Precalculus Autumn 2017 A List of Topics for the Final

MATH 1080 Test 2 -Version A-SOLUTIONS Fall a. (8 pts) Find the exact length of the curve on the given interval.

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

DIFFERENTIATION RULES

MAT187H1F Lec0101 Burbulla

Section 6.1 Angles and Radian Measure Review If you measured the distance around a circle in terms of its radius, what is the unit of measure?

Mathematics Trigonometry: Unit Circle

Since 1 revolution = 1 = = Since 1 revolution = 1 = =

5.1: Graphing Sine and Cosine Functions

dx n a 1(x) dy

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

Section 6.2 Trigonometric Functions: Unit Circle Approach

MA 114 Worksheet Calendar Fall 2017

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Math 216 Second Midterm 20 March, 2017

Homework #5 Solutions

4. Sinusoidal solutions

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

Chapter 14 Oscillations

Dynamic Response of Beams on Elastic Foundation with Axial Load

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t)))

Periodic functions: simple harmonic oscillator

Nonlinear Dynamic Systems Homework 1

3.3. SYSTEMS OF ODES 1. y 0 " 2y" y 0 + 2y = x1. x2 x3. x = y(t) = c 1 e t + c 2 e t + c 3 e 2t. _x = A x + f; x(0) = x 0.

Department of Physics

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. and θ is in quadrant IV. 1)

Fundamentals Physics. Chapter 15 Oscillations

Pre-Calculus II: Trigonometry Exam 1 Preparation Solutions. Math&142 November 8, 2016

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson.

1. (10pts) If θ is an acute angle, find the values of all the trigonometric functions of θ given that tan θ = 1. Draw a picture.

MTH 122: Section 204. Plane Trigonometry. Test 1

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

CHEE 319 Tutorial 3 Solutions. 1. Using partial fraction expansions, find the causal function f whose Laplace transform. F (s) F (s) = C 1 s + C 2

Lecture Notes for Math 251: ODE and PDE. Lecture 12: 3.3 Complex Roots of the Characteristic Equation

Math 308 Exam I Practice Problems

Math 122 Final Review

spring mass equilibrium position +v max

Travelling and Standing Waves

Derivatives of Trig and Inverse Trig Functions

Volumes of Solids of Revolution Lecture #6 a

Section 8.5. z(t) = be ix(t). (8.5.1) Figure A pendulum. ż = ibẋe ix (8.5.2) (8.5.3) = ( bẋ 2 cos(x) bẍ sin(x)) + i( bẋ 2 sin(x) + bẍ cos(x)).

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes

Math 1303 Part II. The opening of one of 360 equal central angles of a circle is what we chose to represent 1 degree

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

- 1 - θ 1. n 1. θ 2. mirror. object. image

Rotational Motion. PHY131H1F Summer Class 10. Moment of inertia is. Pre-class reading quiz

Transcription:

TRILOBIC VIBRANT SYSTEMS Florentin Smarandache, Mircea Eugen Șelariu. INTRODUCTION The trilobes are ex-centric circular supermathematics functions (EC-SMF) of angular excentricity ε = π, with notations cetθ and setθ, for the trilobic ex-centric cosine and, respectively, the trilobic ex-centric sine, with equations: () { cetθ = cex [θ, S (s, π )] = cos{θ arcsin [s. sin (θ π )]} = cos [θ + arcsin [s. cosθ]] setθ = sex [θ, S (s, π )] = sin{θ arcsin [s. sin (θ π )]} = sin [θ + arcsin [s. cosθ]] where S is a point, called ex-center, from the unity-circle plan of CU[O(0, 0), R = ], of polar coordinates S(s,ε), where s [-,+] is the numerical linear ex-centricity, and e = Rs is the real linear ex-centricity, for any circle of radius R, and ε is the angular ex-centricity. The graphics of trilobic ex-centric supermathematics functions (TE-SMF) are shown in Figure. Plot[Evaluate[Table[{Cos[t + ArcSin[sCos[t]]]}, {s,,0}], {t, 0,Pi}]] Plot[Evaluate[Table[{Cos[t + ArcSin[sCos[t]]]}, {s, 0, +}], {t, 0,Pi}]] 3 5 6 3 5 6 Plot[Evaluate[Table[{Cos[t + ArcSin[sCos[t]]]}, {s,, +}], {t, 0,Pi}]] ParametricPlot3D[{t, Cos[t + ArcSin[0.sCos[t]]],0.s}, {s, 0,0}, {t, 0,Pi}] 3 5 6 Fig., a The graphics of trilobic functions C of ex-centric variable θ cetθ Plot[Evaluate[Table[{Sin[t + ArcSin[sCos[t]]]}, {s,,0}], {t, 0,Pi}]] Plot[Evaluate[Table[{Sin[t + ArcSin[sCos[t]]]}, {s, 0,}], {t, 0,Pi}]]

3 5 6 3 5 6 Plot[Evaluate[Table[{Sin[+ArcSin[sCos[t]]]}, {s,,}], {t, 0,Pi}]] ParametricPlot3D[Evaluate [Table [{t, Sin [t + ArcSin[sCos[t]]], s}, {s,,}], {t, 0,Pi}]] 3 5 6 Fig., b The graphics of trilobic functions S of ex-centric variable θ setθ ParametricPlot[Evaluate[Table[{Cos[t ArcSin[0.sSin[t]]], Sin[t + ArcSin[0.sCos[t]]]}, {s, 0,0}]], {t, 0,Pi}]] ParametricPlot[Evaluate[Table[{Cos[t + ArcSin[0.sCos[t]]], Sin[t ArcSin[0.sSin[t]]]}, {s, 0,0}]], {t, 0,Pi}]] x = cexθ { y = setθ de S(sinus) sau de y = cetθ {x y = cexθ de C(cosinus) sau de x Fig., a The graphics of trilobes S (TS) and of trilobes C (TC) of ex-centric variable θ in D The trilobic ex-centric supermathematics functions are abbreviated as (TE-SMF). It follows that, for a numerical linear ex-centricity s = 0, TE-SMF degenerates into central circular functions (CC-SMF) or circular functions / ordinary Euler trigonometric functions cos and sin (s = 0 θ), and for an angular ex-centricity ε = 0 and s 0, it degenerates in EC-SMF cexθ and, respectively, sexθ.

Fig., b The graphics of trilobes S and of trilobes C of ex-centric variable θ in 3D Fig., c Trilobic disks S and C of s = 0,6 The term of TE-SMF derives from the fact that, for s (0, ), the parametric equations, consisting of a combination of EC-SMF and TE-SMF, express closed plane curves of 3 lobes, which, for s = 0, degenerates in a perfect circle and for s = in a rectangular isosceles triangle (TS) or in an ex-centric rectangular isosceles triangle (TC), a figure in the shape of inclined Y, visible in the graphs of Figures, a.. DIFFERENTIAL EQUATION OF TRILOBIC VIBRANT SYSTEMS Let us have the functions x(t), y(t) : R [-,+] and θ = Ω.t x(t) = cet[ωt, S(s, ε)] () { y(t) = set[ωt, S(s, ε)] of the same ex-center S(s, ε), where s is the polar radius and ε the polar angle, in a unity-circle of radius R = CU(O,). 3

Their derivatives, for θ = Ω.t and dθ = Ω =, are: () { x (t) = d dθ ce t[ωt, S(s, ε)] = dt dt y (t) = d dθ set[ωt, S(s, ε)] = dt dt where Ω. detθ = ω and, explicitly: x (t) = Ω. ( (3) { y (t) = Ω. ( + s.sinθ s cosθ s.sinθ s. cos θ dt d cet[θ, S(s, ε)] = Ω. d cet[θ, S(s, ε)] = Ω. detθ. setθ dθ dθ d set[θ, S(s, ε)] = Ω. d set[θ, S(s, ε)] = + Ω. detθ. cetθ dt dθ ) sin [θ + arcsin(s. cosθ] = ω. setθ ) cos[θ + arcsin(s. sinθ)] = ω. cetθ from where we get the expression TE-SMF trilobic ex-centric derivative of ex-centric variable θ: () detθ = s.sinθ = d (θ) = aetθ, with graphics in Figure 3. s cosθ dθ dθ.0 s. sin[t] Plot[Evaluate[Table[{( s cos[t] )}, {s,, 0}], {t, 0,Pi}]].0 s. sin[t] Plot[Evaluate[Table[{( s cos[t] )}, {s,, 0}], {t, 0,Pi}]].5.5 3 5 6 3 5 6 s. sin[t] Plot[Evaluate[Table[{( s cos[t] )}, {s,, +}], {t, 0,Pi}]] detθ 0.sSin[t] ParametricPlot3D[{t, 0.0s Cos[t], 0.s}, {s, 0,0}, {t, 0,Pi}] detθ.0.5 3 5 6 Fig. 3 The graphics TE-SMF detθ and the values of wronskian matrix Ω. detθ of Ω = for trilobic vibrations dexθ = s.cost s sin θ detθ = s.sint s cos θ

Fig. Explanatory sketches of EC-SMF dexθ and TE-SMF detθ The function trilobic ex-centric amplitude aetθ = (θ) is represented by the angle (θ) or by the centric variable, to the center O(0, 0), as a function of angle θ to the ex-center S(s, π ) or of ex-centric variable θ (Fig. ), and Ω. detθ = ω(t), so that the second derivative of TE-SMF (3) is: (5) { x = d dt ( ω. setθ) = З. setθ ω. cetθ y = d dt (ω. cetθ) = З. cetθ ω. setθ where we denoted by З = dω the angular acceleration of a moving point on the circle of parametric equations dt expressed by the relations (), with variable angular speed (), as it can be observed in Figure 5, following the angular distribution of colors. The wronskian matrix of trilobic system of vibrations is: x(t) y(t) S(s, ε)] set[ωt, S(s, ε)] (6) = cet[ωt, x (t) y (t) Ω. detθ. setθ + Ω. detθ. cetθ = Ω. detθ[cet θ. +set θ ] = Ω. detθ because cet θ + set θ =, as well as their counterparts cex θ + sex θ =, as well as their ancestor / precursor archaics cos + sin =. The graphics of wronskian matrix, for Ω =, are shown in Figure 3, from where it can be inferred that the values are strictly positive for s < and, by consequence, there is a linear differential equation, of a dynamic technical system, of nonlinear elastic property, admitting these functions as fundamental system of solutions. The fundamental system of solutions is: (7) Z = C cetωt + C setωt, where C, C R are constant and (7) is the general solution of the following differential equation. The equations is: z x y (8) z x y = 0 z x y 5

ParametricPlot[Evaluate[Table[{sCos[t + ArcSin[sCos[t]]], ssin[t + ArcSin[sCos[t]]]}, {s,, 0}]] PolarPlot[ x + y = detθ],s [-,0].0.5 ParametricPlot[Evaluate[Table[{s. Cos[t + ArcSin[sCos[t]]], s. Sin[t + ArcSin[sSin[t]]]}, {s, 0,}], {t, 0,Pi}]] PolarPlot[ x + y = detθ],s [-,] Fig. 5 The trajectory of a trilobic moving point, on the circles of equations (), of variable radius R = 0,s, with s [0, ] and the speeds in polar coordinates for R = and s [-,+] x y x y x y (9) z x y z x y + z = 0 x y z cetθ setθ (8 ) z ω. setθ ω. cetθ = 0 z З. setθ ω. cetθ З. cetθ ω. setθ cetθ setθ (8 ) z ω. setθ ω. cetθ z cetθ setθ З. setθ ω. cetθ З. cetθ ω. setθ + 6

ω. setθ z З. setθ ω. cetθ ω. cetθ З. cetθ ω = 0. setθ (0) z. ω(cet θ + set θ ) z. [З. cet θ ω. cetθsetθ + З. set θ + ω. cetθ. setθ] + z[ З. ω. cetθsetθ + ω 3. set θ + З. ωsetθ. cetθ + ω 3. cet θ] = 0 (0 ) z. ω z. З + z. ω 3 = 0 or (0 ) z z З ω + z. ω = 0 which is the differential equation of open, unamortized vibrations, of trilobic mechanical systems, identical equation, in form, with the equation of open, unamortized vibrations of ex-centric systems, and with the equation of quadrilobic ones. 3. INTEGRAL CURVES IN THE PHASE PLANE The integral curves are the plane curves described by the speed points rotating on the unity-circle of R =, or on another circle of radius equally to the maximum amplitude of oscillation R = A, according to their projection position on the axis Ox, i.e. V(x) and are sunt shown in Figure 6. Their parametric equations are: for trilobes C x = cetθ () { y = Ω. detθ. setθ for trilobes S x = setθ () { y = Ω. detθ. cetθ with graphics in Figure 6, a and, respectively, 6, b. ParametricPlot[Evaluate[Table[{cos[x + arcsin[scos[x]]], sin [x + arcsin[scos[x]]] ( s sin[x] Sqrt[ (scos[x]) ])}, {s,, }], {x, 0, Pi} V(x C) 0 0.0 Fig. 6, a Integral curves of open, unamortized vibrations of trilobic mechanical systems C in the phase plane In the case of open, unamortized vibrations, there are only two forces in the system: the force exerted by the elastic element of the system, proportional to the movement x, namely 0.0 7

k. cetωt (3) F el = k.x = { k. setωt, where k is an elastic constant of the element and the acceleration force, proportional to the mass m of the oscillating system and to the mass acceleration of the system, i.e. 0.0 ParametricPlot[Evaluate[Table[{sin[x + arcsin[scos[x]]], cos[x + arcsin[scos[x]]]( s sin[x] Sqrt[ (scos[x]) ])}, {s,,}], {x, 0,Pi} V(x S) 0 0.0 Fig. 6, b Integral curves of trilobic mechanical systems of open, unamortized vibrations S in the phase plane () F acc = m.x = { m( З. setθ ω. cetθ) m(+з. cetθ ω. setθ). STATIC ELASTIC PROPERTIES (SEP) OF TRILOBIC OSCILLATING SYSTEMS Since there are only two forces in the considered system, under condition of dynamic equilibrium, they must be equal and of contrary signs / directions, meaning that (5) F el + F acc = 0, F el = F acc and, as a result, the static elastic properties (SEP) of trilobic systems are expressed by the parametric equations: x = cetθ (6) { y = x = ( З. setθ ω. cetθ) and, explicitly, for trilobic systems C: (6 ) { x = cos [θ + arcsin (s. cosθ] s.sin[x] y = ( cos[x + arcsin[scos[x]]] ( s cos[x] ) ( scos[x] + cos[x]sin[x] s cos[x] ( s cos[x] ) 3 )sin[x + arcsin[s. cos[x]]]) with graphics in Figure 7, while for trilobic systems S, the parametric equations are: x = setθ (7) { y = y = (З. cetθ ω. setθ) 8

and, explicitly: (7 ) { y = (cos[x + arcsin[s. cos[x]]]( with graphics in Figure 7. x = sin [θ + arcsin (s. cosθ] scos[x] s cos[x] + s 3 cos[x]sin[x] ( s cos[x] ) 3 ) ( s.sin[x] s cos[x] ) sin[x + arcsin[s. cos[x]]]) s. sin[x] ParametricPlot[Evaluate[Table[{cos[x + arcsin[scos[x]]], ( cos[x + arcsin[scos[x]]] ( s cos[x] ) scos[x] ( s cos[x] + cos[x]sin[x] )sin[x + arcsin[s. cos[x]]])}, {s,, 0}], {x, 0,Pi} ( s cos[x] ) 3 0.0 0.0 0 0 0.0 0.0 9

scos[x] ParametricPlot[Evaluate[Table[{sin[x + arcsin[s. cos[x]]], (cos[x + arcsin[s. cos[x]]]( s cos[x] + s3cos[x]sin[x] ( s cos[x] ) 3 s. sin[x] ( s cos[x] ) sin[x + arcsin[s. cos[x]]])}, {s, 0, }], {x, 0,Pi} Fig.7 Static Elastic Properties (SEP) of trilobic mechanical systems of vibrations C and S, open, unamortized ) From graphics in Figure 7, it follows that SEP linear for s = 0, as it was expected, since we are in this case in the centric field, of classical linear systems of vibrations, expressed by circular centric functions cos and sin, but also for s =, which is a less expected result, even a surprise, which also appeared with the other systems expressed by supermathematic functions mentioned above (quadrilobes, expressed by quadrilobic functions coqθ and siqθ, but alo by SMF- ex-centric circular, by functions cexθ and sexθ). REFERENCES Şelariu Mircea Eugen STUDIUL VIBRAŢIILOR LIBERE ALE UNUI SISTEM NELINIAR, CONSERVATIV CU AJUTORUL FUNCŢIILOR CIRCULARE EXCENTRICE Şelariu Mircea Eugen FUNCŢIILE SUPERMATEMATICE CIRCULARE EXCENTRICE cexθ şi sexθ DE VARIABILĂ EXCENTRICĂ θ SOLUŢIILE UNOR SISTEME MECANICE NELINIARE 3 Şelariu Mircea Eugen FUNCŢIILE SUPERMATEMATICE CIRCULARE EXCENTRICE Cex şi Sex DE VARIABILĂ CENTRICĂ CA SOLUŢII ALE UNOR SISTEME OSCILANTE NELINIARE Com. I Conf. Naţ. Vibr.în C.M. Timişoara, 978, pag. 95...00 Com. A VII-a Conf.Naţ. V.C.M., Timişoara, 993, pag. 75 8. TEHNO 98. A VIII-a Conferinţa de Inginerie Managerială şi Tehnologică, Timişoara 998, pag 557 57 Şelariu Mircea Eugen QUADRILOBIC VIBRATION SYSTEMS The th International Conference on Vibration Engineering, Timişoara, Sept. 7-30, 005 pag. 77 8 0

5 Şelariu Mircea Eugen SUPERMATEMATICA. FUNDAMENTE, Second edition, Vol. I and Vol. II Editura POLITEHNICA, Timişoara, 0 6 Şelariu Mircea Eugen SUPERMATEMATICA. FUNDAMENTE, Editura POLITEHNICA, Timişoara, 007 7 Şelariu Mircea Eugen FUNCŢII CIRCULARE EXCENTRICE Com. I Conferinţă Naţională de Vibraţii în Construcţia de Maşini, Timişoara, 978, pag.0...08. 8 Şelariu Mircea Eugen FUNCŢII CIRCULARE EXCENTRICE şi EXTENSIA LOR. 9 Şelariu Mircea Eugen RIGIDITATEA DINAMICĂ EXPRIMATĂ CU FUNCŢII SUPERMATEMATICE 0 Şelariu Mircea Eugen DETERMINAREA ORICÂT DE EXACTĂ A RELAŢIEI DE CALCUL A INTEGRALEI ELIPTICE COMPLETE DE SPETA ȊNTȂIA K(k) Bul. St.şi Tehn. al I.P. TV Timişoara, Seria Mecanică, Tomul 5(39), Fasc. - 980, pag. 89...96 Com.VII Conf. Internaţ. De Ing. Manag. Si Tehn., TEHNO 95 Timişoara, 995 Vol.7 : Mecatronică, Dispoz. Si Rob. Ind., pag. 85 9 Bul. VIII-a Conf. De Vibr. Mec., Timişoara, 996, Vol III, pag.5.... Şelariu Mircea Eugen SMARANDACHE STEPPED FUNCTIONS Scienta Magna Vol. 3, No., 007, ISSN 556-6706 Şelariu Mircea Eugen TEHNO ART OF ŞELARIU SUPERMATHEMATICS FUNCTIONS (ISBN-0):-59973-037-5 (ISBN-3):97--59973-037-0 3 Preda Horea REPREZENTAREA ASISTATĂ A TRAIECTORILOR ÎN PLANUL FAZELOR A VIBRAŢIILOR NELINIARE (EAN): 978599730370 Com. VI-a Conf. Naţ. Vibr. în C.M. Timişoara, 993 5 Smarandache Florentin Şelariu Mircea Eugen IMMEDIATE CALCULATION OF SOME POISSON TYPE INTEGRALS USING SUPERMATHEMATICS CIRCULAR EX- CENTRIC FUNCTIONS http://arxiv.org/abs/0706.38 Archiv arxiv (United States) vixra.org > Functions and Analysis > vixra:00.0053 6 Şelariu Mircea Eugen MIŞCAREA CIRCLARĂ EXCENTRICĂ. PENDULUL SUPERMATEMATIC 7 Şelariu Mircea Eugen ELEMENTE NELINIARE LEGATE ȊN SERIE 8 Şelariu Mircea Eugen RIGIDITATEA DINAMICĂ EXPRIMATĂ CU FUNCŢII SUPERMATEMATICE 9 Şelariu Mircea Eugen OPTIMIZAREA TRANSPORTULUI VIBRAŢIONAL CU AJUTORUL FUNCŢIILOR SUPERMATEMATICE CIRCULARE EXCENTRICE (FSM-CE) 0 Şelariu Mircea Eugen O METODA NOUA DE INTEGRARE. INTEGRAREA PRIN DIVIZAREA DIFERENŢIALEI Şelariu Mircea Eugen INTEGRALE SI FUNCŢII ELIPTICE EXCENTRICE www.cartiaz.ro pag. 3 www.cartiaz.ro pag. 3 www.cartiaz.ro pag. www.cartiaz.ro pag. www.cartiaz.ro pag. www.cartiaz.ro pag. Şelariu Mircea Eugen LOBELE - CURBE MATEMATICE NOI www.cartiaz.ro pag. 6

ANEXA Quasitrilobes in D

Quasitrilobes in 3D 3