Arithmetic progressions in sumsets

Similar documents
Solving a linear equation in a set of integers II

ARITHMETIC PROGRESSIONS IN SPARSE SUMSETS. Dedicated to Ron Graham on the occasion of his 70 th birthday

BURGESS INEQUALITY IN F p 2. Mei-Chu Chang

arxiv: v3 [math.co] 23 Jun 2008

Subset sums modulo a prime

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

On the Distribution of Multiplicative Translates of Sets of Residues (mod p)

A proof of Freiman s Theorem, continued. An analogue of Freiman s Theorem in a bounded torsion group

Pair dominating graphs

SQUARES AND DIFFERENCE SETS IN FINITE FIELDS

arxiv: v2 [math.nt] 4 Nov 2012

Szemerédi-Trotter theorem and applications

ON A CLASS OF APERIODIC SUM-FREE SETS NEIL J. CALKIN PAUL ERD OS. that is that there are innitely many n not in S which are not a sum of two elements

HOW OFTEN IS EULER S TOTIENT A PERFECT POWER? 1. Introduction

Walk through Combinatorics: Sumset inequalities.

A SHARP RESULT ON m-covers. Hao Pan and Zhi-Wei Sun

h-fold sums from a set with few products

arxiv:math/ v3 [math.co] 15 Oct 2006

GROWTH IN GROUPS I: SUM-PRODUCT. 1. A first look at growth Throughout these notes A is a finite set in a ring R. For n Z + Define

On the Density of Sequences of Integers the Sum of No Two of Which is a Square II. General Sequences

SUM-PRODUCT ESTIMATES APPLIED TO WARING S PROBLEM MOD P

LARGE DEVIATIONS OF TYPICAL LINEAR FUNCTIONALS ON A CONVEX BODY WITH UNCONDITIONAL BASIS. S. G. Bobkov and F. L. Nazarov. September 25, 2011

A NEW UPPER BOUND FOR FINITE ADDITIVE BASES

A SUM-PRODUCT ESTIMATE IN ALGEBRAIC DIVISION ALGEBRAS OVER R. Department of Mathematics University of California Riverside, CA

SUMSETS AND THE CONVEX HULL MÁTÉ MATOLCSI AND IMRE Z. RUZSA

SUM-PRODUCT ESTIMATES IN FINITE FIELDS VIA KLOOSTERMAN SUMS

Some problems related to Singer sets

Equidivisible consecutive integers

On prime factors of subset sums

arxiv:math/ v2 [math.nt] 3 Dec 2003

The Degree of the Splitting Field of a Random Polynomial over a Finite Field

On the elliptic curve analogue of the sum-product problem

SUMSETS MOD p ØYSTEIN J. RØDSETH

Mei-Chu Chang Department of Mathematics University of California Riverside, CA 92521

On distribution functions of ξ(3/2) n mod 1

#A45 INTEGERS 9 (2009), BALANCED SUBSET SUMS IN DENSE SETS OF INTEGERS. Gyula Károlyi 1. H 1117, Hungary

ON A PROBLEM OF PILLAI AND ITS GENERALIZATIONS

SUM-PRODUCT ESTIMATES APPLIED TO WARING S PROBLEM OVER FINITE FIELDS

ORTHOGONAL EXPONENTIALS, DIFFERENCE SETS, AND ARITHMETIC COMBINATORICS

J. Combin. Theory Ser. A 116(2009), no. 8, A NEW EXTENSION OF THE ERDŐS-HEILBRONN CONJECTURE

c 2010 Society for Industrial and Applied Mathematics

Squares in products with terms in an arithmetic progression

The number of edge colorings with no monochromatic cliques

DIEUDONNE AGBOR AND JAN BOMAN

Non-averaging subsets and non-vanishing transversals

SZEMERÉDI-TROTTER INCIDENCE THEOREM AND APPLICATIONS

A NEW PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS

The Complete Intersection Theorem for Systems of Finite Sets

IMPROVED RESULTS ON THE OSCILLATION OF THE MODULUS OF THE RUDIN-SHAPIRO POLYNOMIALS ON THE UNIT CIRCLE. September 12, 2018

ON THE GAPS BETWEEN ZEROS OF TRIGONOMETRIC POLYNOMIALS

A REMARK ON THE GEOMETRY OF SPACES OF FUNCTIONS WITH PRIME FREQUENCIES

Roth s Theorem on 3-term Arithmetic Progressions

A simple branching process approach to the phase transition in G n,p

ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS Mathematics Subject Classification: 11B05, 11B13, 11P99

Generalized incidence theorems, homogeneous forms and sum-product estimates in finite fields arxiv: v2 [math.

Long Arithmetic Progressions in A + A + A with A a Prime Subset 1. Zhen Cui, Hongze Li and Boqing Xue 2

The Advantage Testing Foundation Solutions

3. 4. Uniformly normal families and generalisations

SOME RESULTS AND PROBLEMS IN PROBABILISTIC NUMBER THEORY

ON SUMS OF PRIMES FROM BEATTY SEQUENCES. Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD , U.S.A.

Finite and infinite arithmetic progressions in sumsets

A REMARK ON THE GEOMETRY OF SPACES OF FUNCTIONS WITH PRIME FREQUENCIES.

Off-diagonal hypergraph Ramsey numbers

CONSECUTIVE INTEGERS IN HIGH-MULTIPLICITY SUMSETS

NECESSARY CONDITIONS FOR WEIGHTED POINTWISE HARDY INEQUALITIES

On the number of cycles in a graph with restricted cycle lengths

A Sharpened Hausdorff-Young Inequality

Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime

On a combinatorial method for counting smooth numbers in sets of integers

220 B. BOLLOBÁS, P. ERDŐS AND M. SIMONOVITS then every G(n, m) contains a K,,, 1 (t), where a log n t - d log 2 (1 Jc) (2) (b) Given an integer d > 1

Splitting Fields for Characteristic Polynomials of Matrices with Entries in a Finite Field.

On prime factors of integers which are sums or shifted products. by C.L. Stewart (Waterloo)

Karol Cwalina. A linear bound on the dimension in Green-Ruzsa s Theorem. Uniwersytet Warszawski. Praca semestralna nr 1 (semestr zimowy 2010/11)

New lower bounds for hypergraph Ramsey numbers

Integers without large prime factors in short intervals and arithmetic progressions

ON THE ERDOS-STONE THEOREM

Asymptotically optimal induced universal graphs

Katarzyna Mieczkowska

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu**

Irredundant Families of Subcubes

Roots of Polynomials in Subgroups of F p and Applications to Congruences

Approximation exponents for algebraic functions in positive characteristic

Maximum subsets of (0, 1] with no solutions to x + y = kz

GAPS BETWEEN FRACTIONAL PARTS, AND ADDITIVE COMBINATORICS. Antal Balog, Andrew Granville and Jozsef Solymosi

A DEGREE VERSION OF THE HILTON MILNER THEOREM

Longest paths in circular arc graphs. Paul N. Balister Department of Mathematical Sciences, University of Memphis

VERTEX DEGREE SUMS FOR PERFECT MATCHINGS IN 3-UNIFORM HYPERGRAPHS

On the second smallest prime non-residue

Notes 6 : First and second moment methods

ON THE IRREDUCIBILITY OF THE GENERALIZED LAGUERRE POLYNOMIALS

A PROOF OF ROTH S THEOREM ON ARITHMETIC PROGRESSIONS

A PHYSICAL SPACE PROOF OF THE BILINEAR STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR THE SCHRÖDINGER EQUATION

NUMBER FIELDS WITHOUT SMALL GENERATORS

arxiv: v1 [math.co] 7 Jul 2014

Asymptotically optimal induced universal graphs

A LeVeque-type lower bound for discrepancy

Invertibility of symmetric random matrices

Maximal non-commuting subsets of groups

Constructions of digital nets using global function fields

A LOWER BOUND FOR THE SIZE OF A MINKOWSKI SUM OF DILATES. 1. Introduction

Transcription:

ACTA ARITHMETICA LX.2 (1991) Arithmetic progressions in sumsets by Imre Z. Ruzsa* (Budapest) 1. Introduction. Let A, B [1, N] be sets of integers, A = B = cn. Bourgain [2] proved that A + B always contains an arithmetic progression of length exp(log N) 1/3 ε. Our aim is to show that this is not very far from the best possible. Theorem 1. Let ε be a positive number. For every prime p > p 0 (ε) there is a symmetric set A of residues mod p such that A > (1/2 ε)p and A + A contains no arithmetic progression of length (1.1) exp(log p) 2/3+ε. A set of residues can be used to get a set of integers in an obvious way. Observe that the 1/2 in the theorem is optimal: if A > p/2, then A + A contains every residue. Acknowledgement. I profited much from discussions with E. Szemerédi; he directed my attention to this problem and to Bourgain s paper. 2. The construction. In this section we describe the set A of Theorem 1 and prove its properties, assuming Theorems 2 and 3 (to be stated below) which will be proved in Sections 3 and 4. Our construction goes as follows. Take k residues a 1,..., a k Z p and write (2.1) F (x) = e(a j x/p), f(x) = Re F (x) = cos(2πa j x/p) ; here, as usual, e(t) = exp 2πit. Take a Q > 0 and set (2.2) A = {x : f(x) > Q}. * This paper was presented at the CBMS regional conference in Manhattan, Kansas, May 1990. Participation was supported by Hungarian National Foundation for Scientific Research, Grant No. 1811 and NSF.

192 I. Z. Ruzsa A is a symmetric set of residues. If x, y A, then we have 2Q < Re (e(a j x/p) + e(a j y/p)) = Re ( ( )) aj (x y) e(a j y/p) 1 + e p ( ) aj (x y) 1 + e. p Consequently, A A (which is equal to A + A by the symmetry) will be disjoint from the set { (2.3) H = h : } 1 + e(a j h/p) < 2Q. Our task is to find a 1,..., a k and Q so that A > (1/2 ε)p and H intersects every not too short arithmetic progression. For a typical choice of a 1,..., a k, the functions e(a j x/p) will be almost independent, thus f(x) has approximately a normal distribution with variance k/2; hence A p/2 will hold if Q = o( k). We formulate this exactly as follows. 2.1. Definition. We call the sequence a 1,..., a k Z p K-independent for a number K > 0 if the equation (2.4) aj x j 0 (mod p) has no solution with 0 < x j K. Theorem 2. Let a 1,..., a k be a K-independent sequence of residues mod p, c 1,..., c k real numbers, c 2 j = 2σ2 > 0, max c j =, c j = S. Put We have uniformly in t (2.5) 1 p f(x) tσ f(x) Q f(x) = c j cos(2πa j x/p). 1 Φ(t) ( ) 2 ( ) 1 S + min,, σ K σk where Φ is the standard normal distribution. In particular, if c j = 1 for all j, then 1 ( ) 2 (2.6) 1 Φ p k Q 1 ( ) 1 k k + min,. K K Theorem 2 will be proved in Section 4. The set H is defined in terms of the function g(h) = 1 + e(a j h/p) which is more difficult to handle because of the sign. We may try a

Arithmetic progressions in sumsets 193 square-mean inequality: (2.7) g(h) k 1 + e(a j h/p) 2 = 2k(k + f(h)). So, to guarantee a small value of g(h) it is sufficient to have f(h) k. To ensure this we need a stronger assumption than K-independence. 2.2. Definition. We call the sequence a 1,..., a k Z p K, L-separated for K, L > 0 if the equation (2.8) y + a j x j 0 (mod p) has no solution with 0 < x j K, y L. Theorem 3. Let a 1,..., a k be a K, L-separated sequence of residues mod p, c 1,..., c k real numbers, c j = S. Put Suppose k 4, 0 < δ < 1/2. If f(x) = c j cos(2πa j x/p). (2.9) K 4k δ log 2 δ and (2.10) T 4p L (2/δ)2k, then among any T consecutive values of x there is always one for which f(x) > S(1 δ) as well as one with f(x) < S(1 δ). This theorem will be proved in Section 3. 2.3. Corollary. Let a 1,..., a k be a K, L-separated sequence of residues mod p, g(h) = 1 + e(a j h/p), K > 4k. If (2.9) and (2.10) are satisfied, then among any T consecutive values of x there is always one for which g(h) < k 2δ. P r o o f. This follows immediately from the previous theorem and inequality (2.7). This result is not directly applicable to our problem, since we need to find small values of g(h) in every arithmetic progression, not just in those with difference 1. A sequence such that a 1 d,..., a k d is K, L-separated for every d 0 would suffice, but such a sequence does not exist. Fortunately, a somewhat weaker assumption also works. 2.4. Definition. We call the sequence a 1,..., a k Z p K, L, m-quasiseparated if m of them can be omitted so that the remaining k m are K, L-separated.

194 I. Z. Ruzsa 2.5. Statement. Let a 1,..., a k be a K, L, m-quasiseparated sequence of residues mod p, g(h) = 1 + e(a j h/p), K > 4k. If (2.9) and (2.10) are satisfied, then among any T consecutive values of x there is always one for which g(h) < 2m + k 2δ. P r o o f. Put g = g 1 + g 2, where g 1 contains the m omitted terms, and g 2 the remaining k = k m. We apply Corollary 2.3 to g 2. If (2.9) and (2.10) hold, they remain true with k < k in place of k, because the right-hand sides are increasing functions of k. Thus between T consecutive values we find one for which g 2 (h) < k 2δ, which implies g(h) 2m + g 2 (h) < 2m + k 2δ. Next we show that with a suitable choice of the parameters almost all k-tuples are independent and quasiseparated. 2.6. Lemma. The number of k-tuples that are not K-independent is at most (2K + 1) k p k 1. P r o o f. The number of possible equations (2.4) is at most (2K + 1) k, since each coefficient lies between K and K, and an equation has at most p k 1 solutions. 2.7. Lemma. The number of k-tuples that are not K, L-separated is at most (2K + 1) k (2L + 1)p k 1. P r o o f. The difference in comparison with the previous lemma is that we have to exclude equation (2.8), where there are 2L + 1 possibilities for y, thus the total number of equations is bounded by (2K + 1) k (2L + 1). 2.8. Lemma. The number of k-tuples that are not K, L, m-quasiseparated is at most (2K + 1) k(m+1) (2L + 1) m+1 p k (m+1). P r o o f. Let F (k, m, K, L) denote the number of k-tuples to be estimated. We know F (k, 0, K, L) (2K + 1) k (2L + 1)p k 1 from the previous lemma. Now we show (2.11) F (k, m, K, L) (2K + 1) k (2L + 1)F (k 1, m 1, K, L). These inequalities yield the lemma by an easy induction. To prove (2.11), take a k-tuple that is not K, L, m-quasiseparated. It must satisfy an equation of type (2.8). The number of possible equations is (2K + 1) k (2L + 1); we show that the number of such solutions of a fixed equation that are not quasiseparated is at most F (k 1, m 1, K, L). Indeed, let j be a subscript such that x j 0. Then a j is uniquely determined

Arithmetic progressions in sumsets 195 by a 1,..., a j 1, a j+1,..., a k, which form a (k 1)-tuple that is not K, L, m 1-quasiseparated. P r o o f o f T h e o r e m 1. Given p and ε, we shall select a positive integer k, then a k-tuple of residues a 1,..., a k and define A by (2.2). We use k as a parameter which we shall optimize at the end; we assume k and k = o(log p). We take four other parameters K, L, m, K and try to find a K -independent k-tuple a 1,..., a k such that da 1,..., da k is K, L, m-quasiseparated for every d 0 (mod p). According to Lemmas 2.6 and 2.8, such a k-tuple exists if (2K + 1) k p k 1 + (p 1)(2K + 1) km (2L + 1) m p k m < p k. This is satisfied if (2.12) (2K + 1) k < p/2 and (2.13) (2K + 1) k (2L + 1) < p 1 1/m /2. (2.12) is satisfied with K = [p 1/k /3]; we shall only need that K, which follows from the assumption k = o(log p). We define A and H by (2.2) and (2.3), with Q = ε k. We use Theorem 2 to estimate the cardinality of A (2.6) yields 1 p A > 1 Φ( 2ε) O(1/k + 1/ K ) > 1/2 ε for large p, since both k and K tend to infinity. H is defined by the inequality g(h) < 2Q. We apply Statement 2.5. Since the conclusion we need is g(h) < 2Q, we put [ ] ε (2.14) m = [Q/2] = k 2 and δ = ε 2 /(2k). To satisfy (2.9), we define K = [(k log k) 2 ]. With these parameters, Statement 2.5 is applicable not only to g but to any of the functions g d (h) = g(hd), and we conclude that there is an element of H among any T consecutive terms of an arithmetic progression, where T is given by (2.10). Our task is to minimize the quantity (2.15) To satisfy (2.13) we put p L ( 4k ε 2 ) 2k. L = [p 1 1/m K k 3 k 1 ]

196 I. Z. Ruzsa and then (2.15) becomes ( 3 k+1 p 2/(ε k) 4k 2 ) 2k log k. The choice k = [(log p/ log log p) 2/3 ] yields T < exp c ε (log p log log p) 2/3. ε 2 3. Large values of f. This section is devoted to the proof of Theorem 3. Let a 1,..., a k Z p, c 1,..., c k real numbers, F (x) = c j e(a j x/p), f(x) = Re F (x) = c j cos(2πa j x/p), c j = S. We shall compare f to a sum of independent random variables. Let X 1,..., X k be independent random variables uniformly distributed on the circle z = 1, ξ j = Re X j, Z = c j X j, ζ = Re Z = c j ξ j. We shall calculate moments of f and ζ. Write l ( ) l (3.1) R uv = E(Z u Z v ), r l = Eζ l = 2 l R v,l v. v We are interested in the distribution of f on T consecutive numbers, say y + 1,..., y + T. Write (3.2) M uv = 1 T m l = 1 T y+t z=y+1 y+t z=y+1 F (x) u F (x) v, f(x) l = 2 l l v=0 v=0 ( ) l M v,l v. v 3.1. Lemma. If the sequence a 1,..., a k is K, L-separated, then for u+v K we have (3.3) M uv R uv p T L Su+v. P r o o f. Write φ(b) = 1 T y+t y=x+1 e(bx/p). It is well known that = 1 if b 0 (mod p), (3.4) φ(b) = 0 if b 0, T = p, 1/T b/p anyway, where... means the distance from the nearest integer. We have M uv = c i1... c iu c j1... c jv φ(a i1 +... + a iu a j1... a jv )

and Arithmetic progressions in sumsets 197 (3.5) R uv = ci1... c iu c j1... c jv, where the means that the summation is over those sequences of subscripts for which (j 1,..., j v ) is a permutation of (i 1,..., i u ) (thus it is empty unless u = v). The assumption of K, L-separation means that the number b = a i1 +... + a iu a j1... a jv satisfies b/p L/p unless (j 1,..., j v ) is a permutation of (i 1,..., i u ). Consequently we have M uv R uv p ci1... c iu c j1... c jv = T L p T L Su+v. 3.2. Lemma. If the sequence a 1,..., a k is K, L-separated, then for l K we have (3.6) m l r l p T L Sl. P r o o f. This follows from the previous lemma, (3.1) and (3.2). P r o o f o f T h e o r e m 3. Assume indirectly that f(x) S(1 δ) for x = y + 1,..., y + T. (The case of big negative values follows by considering the function f(x) similarly.) Then for every number (3.7) U δs/2 we have f(x) + U U + S(1 δ) for the same values of x. Consequently, 1 (3.8) (f(x) + U) l (U + S(1 δ)) l T for any even integer l. The sum on the left side of (3.8) is equal to l ( ) l l ( ) l (3.9) m j U l j = r j U l j + error = E((ζ + U) l ) + error. j j j=0 By the previous lemma, (3.10) error p T L j=0 l ( ) l S j U l j j j=0 We estimate the main term as follows: = p T L (S + U)l if l K. E((ζ + U) l ) (U + S(1 η)) l P(ζ S(1 η)) with any 0 < η < 1. Now ζ S(1 η) certainly holds if ξ j sg c j 1 η for all j = 1,..., k. The probability of one such event is 1 2 arccos(1 η) η η π π

198 I. Z. Ruzsa if η < 1/5. This yields P(ζ S(1 η)) η k, hence (3.11) E((ζ + U) l ) η k (U + S(1 η)) l. Combining (3.7) (3.10) we get the inequality (U + S(1 δ)) l η k (U + S(1 η)) l p T L (S + U)l. After introducing the parameter ϱ = S/(U + S) and rearranging, this takes on the simpler form (3.12) p/(t L) η k (1 ηϱ) l (1 δϱ) l. Condition (3.7) can be rewritten as (3.13) ϱ 2/(2 + δ). We put η = δ/2 into (3.12); the assumption δ < 1/3 guarantees η < 1/5. We use the inequality (1 t) 2 1 2t to obtain (3.14) p/(t L) η k z z 2 with z = (1 ηϱ) l. The quadratic function in (3.14) assumes its maximum at z = η k /2 and this choice yields p/(t L) η 2k /2 = (δ/2) 2k /2, which contradicts (2.10). The choice of z determines ϱ, and it is compatible with (3.13) if and only if ( η k /2 = δ k 2 k 1 1 δϱ ) l ( ) l 2 =, 2 2 + δ or, equivalently, k log(2/δ) + log 2 (3.15) l. log(1 + δ/2) We have to find an even integer l greater than the bound above but less than K; this is possible if K is greater than the right side of (3.15) + 2, which follows from (2.9). 3.3. R e m a r k. Some of our calculations were far from optimal. Performing them with more precision would not, however, yield an essential improvement in the results. I do not know whether a more sophisticated method than this moment inequality could lead to sharper results and an improvement of the exponent in Theorem 1. I feel that most of the loss comes from the square-mean inequality used in (2.7). 4. The normal distribution of f. We prove Theorem 2. We retain the notations introduced at the beginning of the previous section. We shall compare the distribution of f to that of ζ, and ζ to the normal distribution. Since we are now interested in distribution on all residues, we put T = p.

Arithmetic progressions in sumsets 199 We also assume that our function is normalized so that c 2 j = 2, that is, σ = 1. We recall the notation = max c j. We use Esseen s famous inequality [3] in its simplest form: 4.1. Lemma. Let G 1 (x) and G 2 (x) be distribution functions with the corresponding characteristic functions γ 1 (t) and γ 2 (t). Assume that G 1(x) exists and G 1(x) V for all x. Then (4.1) sup G 1 (x) G 2 (x) V T x T + where the implied constant is absolute. 0 γ 1 (t) γ 2 (t) t First we consider ζ. Let ψ(t) = Ee itζ be its characteristic function, P (x) = P(ζ x) its distribution. 4.2. Lemma. There are absolute constants β > 0, B > 1 and T 0 > 1 such that { exp( βt (4.2) ψ(t) 2 ) for t T 0 /, (B t ) 1/ 2 for t > T 0 /. P r o o f. By the definition of ζ we have (4.3) ψ(t) = J(c j t), where J(t) = Ee itξ j = 1 2π 2π 0 e it cos α dα is a Bessel function. We only need the following properties of J(t): (4.4) J(t) = 1 t 2 /4 + O(t 4 ) for small t, J(t) t 1/2 for large t, and J(t) < 1 for all t 0. Hence the function log ψ(t) (4.5) β T = min t T t 2 satisfies { log BT (4.6) β T 2T 2 for T > T 0, β for T T 0 with suitable constants β > 0, B > 1 and T 0 > 1. Observe that J(t) exp( β T t 2 ) for t T by the definition of β T. Since c j t t for all j, an application of this inequality for the numbers c j t with T = t and a substitution to (4.3) yields ( ψ(t) exp β T (cj t) 2) = exp( 2β T t 2 ). dt

200 I. Z. Ruzsa (4.2) follows from this inequality and (4.6). 4.3. Statement. We have (4.7) max P (x) Φ(x) 2. P r o o f. By Lemma 4.1, the left side is (4.8) 0 ψ(t) e t2 /2 t Let T 1 > 0 be a number such that (4.4) holds for t < T 1. Applying (4.4) to each factor we obtain ( ψ(t) = e t2 /2 + O t ) 4 c 4 j = e t2 /2 + O( 2 t 4 ), dt. for t T 1 /, since c 4 j (max c j ) 2 c 2 j 2 2. For t T 1 / this implies ψ(t) e t2 /2 2 t 2 e t2 /2, which implies that the contribution of t T 1 / to (4.8) is O( 2 ). For t > T 1 / we apply Lemma 4.2 to ψ and obtain the same bound after a routine calculation. 4.4. R e m a r k. The bound O( 2 ) is sharp. We could immediately deduce the weaker bound O( ) from the Berry Esseen inequality [1, 3]. The improvement is due mainly to the fact that not only the first but also the third moments of ξ j vanish. Now we turn to comparing ζ and f. 4.5. Lemma. If the sequence a 1,..., a k is K-independent, then m l = r l for l K. The proof is analogous to that of Lemma 3.2, we just apply the second case of (3.4) instead of the third. Recall that S = c j. 4.6. Lemma. Let l = 2u be an even positive integer. Then r l min(s l, u!). P r o o f. We always have ζ S, thus r l S l is obvious. To prove r l u! recall that by (3.1) and (3.5) r l = 2 l c i1... c iu c j1... c ju,

Arithmetic progressions in sumsets 201 where the summation is over those sequences of subscripts for which (j 1,..., j u ) is a permutation of (i 1,..., i u ). Since a fixed sequence (i 1,..., i u ) has at most u! permutations, we obtain r l 2 l u! c i1... c iu 2 = 2 l u!( cj 2) u = u!. 4.7. Lemma. If < 1/2, then P (x) is bounded by an absolute constant. P r o o f. This follows from the familiar inequality and Lemma 4.2. P (x) ψ(t) dt 4.8. Statement. If < 1/2, then 1 ( 1 (4.9) 1 P (t) min, S p K K f(x) tσ P r o o f. Denote this difference by R. By the previous lemma and Lemma 4.1 we have (4.10) R 1 T + T where 0 χ(t) = 1 p ψ(t) χ(t) t p e itf(x). x=1 For every real t and positive integer l we have e it = l 1 j=1 (it) j j! + ϑ tl l! with ϑ 1. Applying this formula both to e itζ and e itf(x) we obtain ψ(t) = l 1 j=1 dt, ). r j t l l 1 m j t l j! (it)j + ϑr l, χ(t) = l! j! (it)j + ϑm l. l! j=1 In view of Lemma 4.5 we have for even l K t l ψ(t) χ(t) 2r l l!. Substituting this into (4.10) we find R 1 T + r l T l. l! l

202 I. Z. Ruzsa The optimal choice is T = (l!/r l ) 1/(l+1) and it yields ( ) 1/(l+1) ( ) rl R r1/l l S min l! l l, 1 l by Lemma 4.6. The statement follows by taking the maximal admissible value l = 2[K/2]. P r o o f o f T h e o r e m 2. For < 1/2 the conclusion follows from Statements 4.3 and 4.8, and for 1/2 it holds obviously. 5. Concluding remarks. In a typical problem of combinatorial number theory, the extremal sets are either very regular, or random sets. Our case is different. If we take a random subset of Z p, then with probability 1 we have A + A = Z p. If A is an arithmetic progression of k elements, then A+A is also an arithmetic progression itself. Multidimensional arithmetic progressions are somewhat better. Say, put A = {n : n = x 1 d 1 +... + x k d k, 0 x i m 1}, a set of m k elements if all of them are different. Here A + A contains arithmetic progressions of 2m 1 elements but no longer if, say, d j+1 /d j > 2m. This gives n δ for the length if A = cn, A [1, N], where δ = δ(c) 0 as c 0, still far from (1.1). Another application of a niveau set of a trigonometric polynomial to an additive problem was given in [4]. References [1] A. C. Berry, The accuracy of the Gaussian approximation to the sum of independent variables, Trans. Amer. Math. Soc. 49 (1941), 122 136. [2] J. Bourgain, On arithmetic progressions in sums of sets of integers, in: A Tribute to Paul Erdős (A. Baker, B. Bollobás, A. Hajnal, eds.), Cambridge Univ. Press, Cambridge 1990, 105 109. [3] C. G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace Gaussian law, Acta Math. 77 (1945), 1 125. [4] I. Z. Ruzsa, Essential components, Proc. London Math. Soc. 54 (1987), 38 56. MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, PF. 127, H-1364 HUNGARY Received on 30.1.1991 (2116)