CEE 370 Environmental Engineering Principles

Similar documents
CEE 370 Environmental Engineering Principles

CEE March FIRST EXAM (Solutions)

FIRST EXAM. Miscellaneous Information: R = cal/mole K = J/mole K Absolute zero = C 1 joule = calories -20 C = wicked cold

CEE November 2012 SECOND EXAM. Answer all questions. Please state any additional assumptions you made, and show all work.

Acid/Base Definitions

Chem 1046 Lecture Notes Chapter 17

Chem12 Acids : Exam Questions M.C.-100

FIRST EXAM. Answer any 4 of the following 5 questions. Please state any additional assumptions you made, and show all work.

CHEMISTRY - BROWN 13E CH.16 - ACID-BASE EQUILIBRIA - PART 2.

Chemistry 400 Homework #3, Chapter 16: Acid-Base Equilibria

Unit 6: ACIDS AND BASES

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases

ACID BASE EQUILIBRIUM

Unit Nine Notes N C U9

(for tutoring, homework help, or help with online classes)

Mid-Term Exam. October 28, 2010

Unit 2 Acids and Bases

CH 15 Summary. Equilibrium is a balance between products and reactants

First Exam December 19---Christmas Break begins December 21. Silberberg Chapter 17-18, Skoog 2-7, 11-13

CHEMICAL EQUILIBRIUM. Cato Maximilian Guldberg and his brother-in-law Peter Waage developed the Law of Mass Action

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College

Chapter 16 Acid-Base Equilibria

Chapter 10 - Acids & Bases

Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from

Advanced Chemistry Practice Problems

SCH4U Chapter 8 review

Dynamic equilibrium: rate of evaporation = rate of condensation II. In a closed system a solid obtains a dynamic equilibrium with its dissolved state

Chapter 6 Acids and Bases

Strong and Weak. Acids and Bases

Honors Chemistry Study Guide for Acids and Bases. NH4 + (aq) + H2O(l) H3O + (aq) + NH3(aq) water. a)hno3. b) NH3

CHEMISTRY - CLUTCH CH.15 - ACID AND BASE EQUILIBRIUM.

CHEMISTRY - BROWN 14E CH.16 - ACID-BASE EQUILIBRIA.

Acid and Bases. Physical Properties. Chemical Properties. Indicators. Corrosive when concentrated. Corrosive when concentrated.

Calorimetry, Heat and ΔH Problems

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

Grace King High School Chemistry Test Review

1. Strengths of Acids and Bases 2. K a, K b 3. Ionization of Water 4. Relative Strengths of Brønsted-Lowry Acids and Bases

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +.

CHEMISTRY 1AA3 Tutorial 2 Answers - WEEK E WEEK OF JANUARY 22, (i) What is the conjugate base of each of the following species?

Chapter 14. Objectives

Chapter 16. Acid-Base Equilibria

Chemistry 192 Problem Set 3 Spring, 2018 Solutions

AP Study Questions

10.1 Acids and Bases in Aqueous Solution

Unit 4a Acids, Bases, and Salts Theory

Ch 7 Practice Problems

AP Chemistry CHAPTER 16 STUDY GUIDE Acid-Base Equilibrium

(Label the Conjugate Pairs) Water in the last example acted as a Bronsted-Lowry base, and here it is acting as an acid. or

Acid-Base Equilibria (Chapter 10.) Problems: 2,3,6,13,16,18,21,30,31,33

General Chemistry II CHM 1046 E Exam 2

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Chapter 16 exercise. For the following reactions, use figure 16.4 to predict whether the equilibrium lies predominantly. - (aq) + OH - (aq)

Understanding the shapes of acid-base titration curves AP Chemistry

Acid-Base Chemistry & Organic Compounds. Chapter 2

Chapter 9 Aqueous Solutions and Chemical Equilibria

HA + B BH + + A acid base acid base

CHEMISTRY 1220 CHAPTER 16 PRACTICE EXAM

ACID-BASE EQUILIBRIA (Part One) A Competition for Protons ADEng. PROGRAMME Chemistry for Engineers Prepared by M. J. McNeil, MPhil.

Chap 16 Chemical Equilibrium HSU FUYIN

is considered acid 1, identify the other three terms as acid 2, base 1, and base 2 to indicate the conjugate acid-base pairs.

Sample Problem Set. Teacher Notes and Answers. Skills Worksheet. EQUILIBRIUM OF ACIDS AND BASES, K a AND K b. Name: Class: Date:

Week 6 AB Strength, ph, Kw, Acids

CEE 370 Environmental Engineering Principles. Equilibrium Chemistry

Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected.

8.1 Theories of acids and bases

Unit 10: Acids and Bases

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Acids and Bases Written Response

Chapter 16 Acid Base Equilibria

Guide to Chapter 15. Aqueous Equilibria: Acids and Bases. Review Chapter 4, Section 2 on how ionic substances dissociate in water.

Chapter 17 Acids and Bases

HA(aq) H + (aq) + A (aq) We can write an equilibrium constant expression for this dissociation: [ ][ ]

Section 32 Acids and Bases. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Acids - Bases in Water

Formulas and Possibly Necessary Data

Chem 105 Tuesday March 8, Chapter 17. Acids and Bases

Mid-Term Exam. October 28, 2010

Weak acids are only partially ionized in aqueous solution: mixture of ions and un-ionized acid in solution.

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017

Aqueous solutions of acids have a sour Aqueous solutions of bases taste bitter

Acid-Base Equilibria

Unit 4: Acid/Base I. abinotes. I) Introduction to Acids and Bases What is an acid?

ACIDS, BASES, AND SALTS

Chapter 10. Acids, Bases, and Salts

X212F Which of the following is a weak base in aqueous solution? A) H 2 CO 3 B) B(OH) 3 C) N 2 H 4 D) LiOH E) Ba(OH) 2

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus

Chapter 16. Dr Ayman Nafady

Acids And Bases. H + (aq) + Cl (aq) ARRHENIUS THEORY

Part One: Acid-Base Concepts. 1. Sour taste. (Examples: vinegar = acetic acid; lemons - citric acid) yellow

Name AP CHEM / / Chapter 14 Outline Acids and Bases

Chapter Test B. Chapter: Acids and Bases

Chapters 15 & 16 ACIDS & BASES ph & Titrations

Acids and Bases. Dr. Diala Abu-Hassan, DDS, PhD Lecture 2 Nursing First Semester 014. Dr. Diala Abu-Hassan 1

Properties of Acids and Bases

Aqueous Equilibria: Acids and Bases

Chapter 10. Acids and Bases

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

Acids and Bases. Properties, Reactions, ph, and Titration

Chapter 7 Acids and Bases

Transcription:

Updated: 29 September 2015 Print version CEE 370 Environmental Engineering Principles Lecture #7 Environmental Chemistry V: Thermodynamics, Henry s Law, Acids-bases II Reading: Mihelcic & Zimmerman, Chapter 3 Davis & Masten, Chapter 2 Mihelcic, Chapt 3 David Reckhow CEE 370 L#7 1

Henry s Law Henry's Law states that the amount of a gas that dissolves into a liquid is proportional to the partial pressure that gas exerts on the surface of the liquid. In equation form, that is: C A = K H p A where, C A = concentration of A, [mol/l] or [mg/l] K H = equilibrium constant (often called Henry's Law constant), [mol/l-atm] or [mg/l-atm] p A = partial pressure of A, [atm] David Reckhow CEE 370 L#7 2

Henry s Law Constants Reaction Name K h, mol/l-atm pk h = -log K h CO 2 (g) _ CO 2 (aq) Carbon 3.41 x 10-2 1.47 dioxide NH 3 (g) _ NH 3 (aq) Ammonia 57.6-1.76 H 2 S(g) _ H 2 S(aq) Hydrogen 1.02 x 10-1 0.99 sulfide CH 4 (g) _ CH 4 (aq) Methane 1.50 x 10-3 2.82 O 2 (g) _ O 2 (aq) Oxygen 1.26 x 10-3 2.90 David Reckhow CEE 370 L#7 3

Example: Solubility of O 2 in Water Background Although the atmosphere we breathe is comprised of approximately 20.9 percent oxygen, oxygen is only slightly soluble in water. In addition, the solubility decreases as the temperature increases. Thus, oxygen availability to aquatic life decreases during the summer months when the biological processes which consume oxygen are most active. Summer water temperatures of 25 to 30 C are typical for many surface waters in the U.S. Henry's Law constant for oxygen in water is 61.2 mg/l-atm at 5 C and 40.2 mg/l-atm at 25 C. What is the solubility of oxygen at 5 C and at 25 C? Example 4.1 from Ray David Reckhow CEE 370 L#7 4

Solution O 2 Solubility Ex. At 5 0 C the solubility is: C (5 C) = K P = 61.2 O H,O O 2 2 2 C O 2 (5 C) = 12.8 mg L mg L- atm x 0.209 atm At 25 0 C the solubility is: C (25 C) = K P = 40.2 O H,O O 2 2 2 C O 2 mg L- atm (25 C) = 8.40 mg L x 0.209 atm David Reckhow CEE 370 L#7 5

Air Stripping Tower Air out with Carbon Dioxide Water in with Carbon Water Out Air In David Reckhow CEE 370 L#7 6

Air Stripping Example An air stripping tower, similar to that shown in the previous slide, is to be used to remove dissolved carbon dioxide gas from a groundwater supply. If the tower lowers the level to twice the equilibrium concentration, what amount of dissolved gas will remain in the water after treatment? The partial pressure is about 350 ppm or 0.00035. The log of 0.00035 is about -3.5. Therefore the partial pressure of carbon dioxide in the atmosphere is 10-3.5 atm. Example 4.2 from Ray David Reckhow CEE 370 L#7 7

Solution to Air Stripping Ex. The first step is to determine Henry's Law constant for carbon dioxide. From the table it is 10-1.5. The equilibrium solubility is then: = K mole L-atm -1.5-3.5 5 CO H,CO p atm 10 2 2 CO =10 10 = C 2 At equilibrium: After treatment: -5-5 C CO 2 = 10 M = 10 mole L x 44 g mole C CO 2 = 0.44 mg/ L C CO2 = 0.88 mg/l 3 10 mg x g mole L David Reckhow CEE 370 L#7 8

Ideal Gas Law The Ideal Gas Law states that the product of the absolute pressure and the volume is proportional to the product of the mass and the absolute temperature. In equation form this is usually written: PV = nrt where, P = absolute pressure, [atm] V = volume, [L] n = mass, [mol] T = absolute temperature, [K] R = proportionality constant or ideal gas constant, [0.0821 L-atm/K-mol] David Reckhow CEE 370 L#7 9

Ideal Gas Law Example Anaerobic microorganisms metabolize organic matter to carbon dioxide and methane gas. Estimate the volume of gas produced (at atmospheric pressure and 25 C) from the anaerobic decomposition of one mole of glucose. The reaction is: C 6 H 12 O 6 3CH 4 + 3CO 2 Example 4.3 from Ray David Reckhow CEE 370 L#7 10

Solution to Ideal Gas Law Ex. Each mole of glucose produces three moles of methane and three moles of carbon dioxide gases, a total of six moles. The total volume is then: V = nrt P = L- atm (6 mol)(0.0821 )(298 K) K- mol (1 atm) V = 147 L David Reckhow CEE 370 L#7 11

Dalton s Law of Partial Pressure Dalton's Law of partial pressures states that the total pressure of a mixture of several gases is the sum of the partial pressures of the individual gases. In equation form this is simply: n P t = Pi i=1 where, P t = total pressure of the gases, [atm] P i = pressure of the ith gas, [atm] David Reckhow CEE 370 L#7 12

Anaerobic Digester Example Anaerobic digesters are commonly used in wastewater treatment. The biological process produces both carbon dioxide and methane gases. A laboratory worker plans to make a "synthetic" digester gas. There is currently 2 L of methane gas at 1.5 atm and 1 L of carbon dioxide gas at 1 atm in the lab. If these two samples are mixed in a 4 L tank, what will be the partial pressures of the individual gases? The total pressure? Example 4.4 from Ray David Reckhow CEE 370 L#7 13

Solution to Anaerobic Digester Ex. First, we must find the partial pressures of the individual gases using the ideal gas law: 1 P = P V V 2 P1 V 1 = nrt = P2 V2 or 2 1 For methane gas For carbon dioxide gas: P 2 = 1.5 atm P 2 = 1 atm 2 L 4 L 1 L 4 L = 0.75 atm = 0.25 atm And the total is: P t = P CH + P CO = 1 atm 4 2 David Reckhow CEE 370 L#7 14

Equilibrium Reactions aa + bb pp + rr c d K eq = {C } {D } a b {A } {B } thermodynamics a, b, p, r = stoichiometric coefficients of the respective reactants {A}, {B}, {P}, {R} = activity of the reactants and products David Reckhow CEE 370 L#7 15

Chemical Activity {A} = γ A [A] {A} = activity of species A, [mol/liter] [A] = concentration of species A, [mol/liter] γ A = activity coefficient of A, unitless γ is dependent on ionic strength -- the concentration of ions in solution. For dilute aqueous solutions γ is near unity. Thus, the activity and concentration are approximately the same. For most freshwater systems, γ may be neglected. David Reckhow CEE 370 L#7 16

Activity conventions the activity of the solvent, water is set equal to unity the activity of a solid in equilibrium with a solution is unity the activity of a gas is the partial pressure the gas exerts on the liquid surface the activity of a solute is related to the concentration by {A} = γ A [A], where γ A is the activity coefficient of species A David Reckhow CEE 370 L#7 17

Auto-dissociation of Water H O 2 H + OH + - K = w + - [ H ][ OH ] [ H O] 2 + - = [ H ][ OH ] At 25 C the value of K w is 10-14 David Reckhow CEE 370 L#7 18

Example 4.12 Find the ph and poh of water at 25 C if the concentration of H + ions is 10-5 M. Solution + -5 ph = - log{h } = - log(10 ) = 5 {OH } = - w K {H } = 10 + 10-14 = 10 - -9 poh = - log{oh } = - log(10 ) = 9-5 -9 David Reckhow CEE 370 L#7 19

Acids & Bases Which is the strongest acid A. H 3 PO 4 B. H 2 CO 3 C. HNO 3 D. CH 3 COOH E. HF David Reckhow CEE 370 L#7 20

Acid:Base Equilibria Monoprotic Acid HA Diprotic Acid + - H + A H A = H + HA 2 HA + - H + A - + 2- + - K A = { H }{ A } K 1 = A {HA} + - { H }{ HA } { H A} + 2- K A 2 = { H }{ A } - 2 { HA } David Reckhow CEE 370 L#7 21

Similar to Table 3.5 in M&Z Acidity Constants Reaction Name K a pk a = log K a HCl = H + + Cl Hydrochloric 1000-3 H 2 SO 4 = H + + HSO 4 - HNO 3 = H + + NO 3 - HSO 4 - = H + + SO 4 - H 3 PO 4 = H + + H 2 PO 4 - Sulfuric, H1 1000-3 Nitric ~1 ~0 Sulfuric, H2 1 x 10-2 2 Phosphoric, H1 7.94 x 10-3 2.1 HAc = H + + Ac - Acetic 2.00 x 10-5 4.7 H 2 CO 3 = H + + HCO 3 - Carbonic, H1 5.01 x 10-7 6.3 H 2 S = H + + HS - Hydrosulfuric, H1 7.94 x 10-8 7.1 H 2 PO 4 - = H + + HPO 4 2 Phosphoric, H2 6.31 x 10-8 7.2 HOCl = H + + OCl - Hypochlorous 3.16 x 10-8 7.5 NH 4 + = H + + NH 3 Ammonium 5.01 x 10-10 9.3 HCO 3 - = H + + CO 3 2 HPO 4 2 = H + + PO 4 3 Carbonic, H2 5.01 x 10-11 10.3 Phosphoric, H3 5.01 x 10-13 12.3 David Reckhow CEE 370 L#7 22

NAME EQUILIBRIA pka Perchloric acid HClO4 = H+ + ClO4 - -7 STRONG Hydrochloric acid HCl = H+ + Cl- -3 Sulfuric acid H2SO4= H+ + HSO4 - -3 (& 2) ACIDS Nitric acid HNO3 = H + + NO3 - -0 Hydronium ion H3O+ = H+ + H2O 0 Trichloroacetic acid CCl3COOH = H + + CCl3COO - 0.70 Iodic acid HIO3 = H+ + IO3-0.8 Dichloroacetic acid CHCl2COOH = H + + CHCl2COO - 1.48 Bisulfate ion HSO4 - = H+ + SO4-2 2 Phosphoric acid H3PO4 = H+ + H2PO4-2.15 (& 7.2,12.3) Ferric ion Fe(H2O)6 +3 = H+ + Fe(OH)(H2O)5 +2 2.2 (& 4.6) Chloroacetic acid CH2ClCOOH = H+ + CH2ClCOO - 2.85 o-phthalic acid C6H4(COOH)2 = H+ + C6H4(COOH)COO - 2.89 (& 5.51) Citric acid C3H5O(COOH)3= H + + C3H5O(COOH)2COO - 3.14 (& 4.77,6.4) Hydrofluoric acid HF = H+ + F- 3.2 Formic Acid HCOOH = H + + HCOO- 3.75 Aspartic acid C2H6N(COOH)2= H+ + C2H6N(COOH)COO- 3.86 (& 9.82) m-hydroxybenzoic acid C6H4(OH)COOH = H+ + C6H4(OH)COO - 4.06 (& 9.92) Succinic acid C2H4(COOH)2 = H + + C2H4(COOH)COO - 4.16 (& 5.61) p-hydroxybenzoic acid C6H4(OH)COOH = H+ + C6H4(OH)COO- 4.48 (& 9.32) Nitrous acid HNO2 = H+ + NO2-4.5 Ferric Monohydroxide FeOH(H2O)5 +2 + H+ + Fe(OH)2(H2O)4 + 4.6 Acetic acid CH3COOH = H + + CH3COO - 4.75 Aluminum ion Al(H2O)6 +3 = H + + Al(OH)(H2O)5 +2 4.8 David Reckhow CEE 370 L#7 23

NAME FORMULA pka Propionic acid C2H5COOH = H + + C2H5COO - 4.87 Carbonic acid H2CO3 = H + + HCO3-6.35 (& 10.33) Hydrogen sulfide H2S = H + + HS - 7.02 (& 13.9) Dihydrogen phosphate H2PO4 - = H + + HPO4-2 7.2 Hypochlorous acid HOCl = H + + OCl - 7.5 Copper ion Cu(H2O)6 +2 = H + + CuOH(H2O)5 + 8.0 Zinc ion Zn(H2O)6 +2 = H + + ZnOH(H2O)5 + 8.96 Boric acid B(OH)3 + H2O = H + + B(OH)4-9.2 (& 12.7,13.8) Ammonium ion NH4 + = H + + NH3 9.24 Hydrocyanic acid HCN = H + + CN - 9.3 p-hydroxybenzoic acid C6H4(OH)COO - = H + + C6H4(O)COO -2 9.32 Orthosilicic acid H4SiO4 = H + + H3SiO4-9.86 (& 13.1) Phenol C6H5OH = H + + C6H5O - 9.9 m-hydroxybenzoic acid C6H4(OH)COO - = H + + C6H4(O)COO -2 9.92 Cadmium ion Cd(H2O)6 +2 = H + + CdOH(H2O)5 + 10.2 Bicarbonate ion HCO3 - = H + + CO3-2 10.33 Magnesium ion Mg(H2O)6 +2 = H + + MgOH(H2O)5 + 11.4 Monohydrogen phosphate HPO4-2 = H + + PO4-3 12.3 Calcium ion Ca(H2O)6 +2 = H + + CaOH(H2O)5 + 12.5 Trihydrogen silicate H3SiO4 - = H + + H2SiO4-2 12.6 Bisulfide ion HS - = H + + S -2 13.9 Water H2O = H + + OH - 14.00 Ammonia NH3 = H + + NH2-23 Hydroxide OH - = H + + O -2 24 M ethane CH4 = H + + CH3-34 David Reckhow CEE 370 L#7 24

Acidity Constants, #1 Reaction Name K a pk a HCl = H + +Cl - Hydrochloric 1000-3 H2SO4 = H + +HSO4 - Sulfuric, H1 1000-3 HNO3 = H + +NO3 - Nitric ~1 ~0 HSO4 - = H + + SO4-2 Sulfuric, H2 1x10-2 2 H3PO4 = H + + H2PO4 - Phosphoric, H1 7.9x10-3 2.1 HAc = H + + Ac - Acetic 2.0x10-5 4.7 H2CO3 = H + + HCO3 - Carbonic, H1 5.0x10-7 6.3 David Reckhow CEE 370 L#7 25

Acidity Constants, #2 Reaction Name K a pk a H2S = H + +HS - Hydrosulfuric, H1 7.9x10-8 7.1 H2PO4 - = H + +HPO4-2 Phosphoric, H2 6.3x10-8 7.2 HOCl = H + +OCl - Hypochlorous 2.5x10-8 7.6 NH4 + = H + + NH3 Ammonium 5x10-10 9.3 HCO3 - = H + + CO3-2 Carbonic, H2 5x10-11 10.3 HPO4-2 = H + + PO4-3 Phosphoric, H3 5x10-13 12.3 David Reckhow CEE 370 L#7 26

Example What fraction of the following acids are ionized at ph 7? a) Nitric b) Hydrochloric c) Sulfuric d) Hypochlorous David Reckhow CEE 370 L#7 27

Solution to Example a) K = a + - [H ][NO 3] [HNO ] 3 [HNO 3] - [NO ] 3 = [H + ] K = 10 1 a -7 = 10-7 F = - [NO 3] [HNO ] + [NO ] 3 3 - = - [NO ] -7-10 [NO ] + [NO ] 3 3-3 1 David Reckhow CEE 370 L#7 28

Solution to Example d) K = a + - [H ][OCl ] [HOCl] [HOCl] - [OCl ] = [H + ] K = 10-7 -7.6 = 4. 0 10 a F = - [OCl ] - [HOCl] + [OCl ] = - [OCl ] - - 4[OCl ] + [OCl ] = 0.20 David Reckhow CEE 370 L#7 29

Log C vs ph Diagram for Hypochlorous Acid -2 C T = 10-3 M Log C (Molar) -4-6 -8 HOCl OCl- -10 1 3 5 7 9 11 13 ph David Reckhow CEE 370 L#7 30

Log C (Molar) -2.5-3 -3.5-4 -4.5-5 Log C vs ph Diagram for Hypochlorous Acid [HOCl] - [OCl ] 6 6.5 7 7.5 8 ph C T = 10-3 M HOCl OCl- = [H + ] K = [H + ] 10 a -7.6 David Reckhow CEE 370 L#7 31

Definitions Bronsted-Lowry (1923) Acids: (proton donor) any substance that can donate a proton to any other substance Bases: (proton acceptor) any substance that accepts a proton from any other substance Acid 1 + Base 2 = Acid 2 + Base 1 HNO 3 + H 2 O = H 3 O + + - NO 3 HOCl + H 2 O = H 3 O + + OCl - NH 4 + + H 2 O = H 3 O + + NH 3 Acid strength of a conjugate acid-base pair is measured relative to the other pair the stronger the acid, the weaker the conjugate base, and vice versa H 2 O + H 2 O = H 3 O + + OH - David Reckhow CEE 370 L#7 32

To next lecture David Reckhow CEE 370 L#7 33