Magnetoplasmonics: fundamentals and applications

Similar documents
Optimizing light harvesting for high magnetooptical performance in metal-dielectric magnetoplasmonic nanodiscs

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary

Lecture 10: Surface Plasmon Excitation. 5 nm

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Localized surface plasmons (Particle plasmons)

Introduction. Chapter Optics at the Nanoscale

7. Localized surface plasmons (Particle plasmons)

Usama Anwar. June 29, 2012

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Superconductivity Induced Transparency

Supplementary Figure 1. Optical and magneto-optical responses for 80 nm diameter particles

Surface-Plasmon Sensors

Biosensing based on slow plasmon nanocavities

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Nanocomposite photonic crystal devices

Surface Plasmon Wave

Spring 2009 EE 710: Nanoscience and Engineering

Quantum Information Processing with Electrons?

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Nano Optics Based on Coupled Metal Nanoparticles

Surface plasmon resonance based refractive index sensor for liquids

Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings

ABSTRACT 1. INTRODUCTION

DETERMINATION OF THE REFRACTIVE INDEX OF THE SE1211 RESIN USING AN SPR SPECTROSCOPY

The Broadband Fixed-Angle Source Technique (BFAST) LUMERICAL SOLUTIONS INC

Dr. Tao Li

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Low Losses Left Handed Materials Using Metallic Magnetic Cylinders.

Po-Han Chen, and Bing-Hung Chen. Institute of Electronic Engineering,

Surface Plasmon Resonance Demo

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

Nanophysics: Main trends

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Full-color Subwavelength Printing with Gapplasmonic

The Dielectric Function of a Metal ( Jellium )

Seminars in Nanosystems - I

Optical cavity modes in gold shell particles

Near-perfect modulator for polarization state of light

ECE280: Nano-Plasmonics and Its Applications. Week8

II Theory Of Surface Plasmon Resonance (SPR)

Nanophotonics: principle and application. Khai Q. Le Lecture 4 Light scattering by small particles

Supplementary Information

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Supporting Online Material. Highly Sensitive Plasmonic Silver Nanorods

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides.

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Supplementary Figure S1 Anticrossing and mode exchange between D1 (Wood's anomaly)

Nanomaterials and their Optical Applications

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

Nanostrukturphysik (Nanostructure Physics)

The Influence Factor Research of Fiber-Optic Sensors Based on Surface. Plasmon

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

The Study of Cavitation Bubble- Surface Plasmon Resonance Interaction For LENR and Biochemical processes

Cyclotron frequency coupled enhancement of Kerr rotation in low refractive index-dielectric/magnetooptic bilayer thin-film structures

Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm)

4. Integrated Photonics. (or optoelectronics on a flatland)

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver

U-Shaped Nano-Apertures for Enhanced Optical Transmission and Resolution

limitations J. Zhou, E. N. Economou and C. M. Soukoulis

Multiple extraordinary optical transmission peaks from evanescent coupling in perforated metal plates surrounded by dielectrics

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE

Sub-wavelength electromagnetic structures

Geometries and materials for subwavelength surface plasmon modes

Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film

MODAL ANALYSIS OF EXTRAORDINARY TRANSMISSION THROUGH AN ARRAY OF SUBWAVELENGTH SLITS

Spatial Coherence Properties of Organic Molecules Coupled to Plasmonic Surface Lattice Resonances in the Weak and Strong Coupling Regimes


Design of Magnetoplasmonic Resonant Nanoantennas for Biosensing Applications

ECE280: Nano-Plasmonics and Its Applications. Week8. Negative Refraction & Plasmonic Metamaterials

Left-handed materials: Transfer matrix method studies

Demonstration of Near-Infrared Negative-Index Materials

Mathematical Pattern of Plasmon Surface Selection Rules According to DrudeModel

Plasmonic nanoguides and circuits

OPTIMIZATION OF A DUAL-MODE SURFACE PLASMON RESONANCE SENSOR

Metamaterials & Plasmonics

Surface plasmon toy-model of a rotating black hole.

Apertureless Near-Field Scanning Probes Based on Graphene Plasmonics

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

Super-Diffraction Limited Wide Field Imaging and Microfabrication Based on Plasmonics

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures

Collective effects in second-harmonic generation from plasmonic oligomers

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory

6. Plasmon coupling between a flat gold interface and gold nanoparticles.

arxiv: v1 [physics.bio-ph] 11 Sep 2015

MULTI-MODE SELF-REFERENCING SURFACE PLASMON RESONANCE SENSORS

Jaroslav Hamrle. October 21, 2014

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Transcription:

Antonio García-Martín http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas Magnetoplasmonics: fundamentals and applications 1

MAGNETO-PLASMONICS Control of MO activity with plasmon excitation P MO Control plasmon properties with an external magnetic field 2

The Lycurgus cup (British Museum. 4th Century) When illuminated from outside the cup appears green, but turns into red when illuminated from inside. PLASMONICS Active topic, but not so new Labors of the Months (Norwich, England, ca. 1480) The ruby color is probably due to embedded gold nanoparticles. 3

PLASMONICS based on Electromagnetic excitation (TM polarized) localized at the interface between a media r <0 (metal) and a media r >0 (dielectric material) Main characteristics Strong localization of EM in subwavelength volumes: Optical nanodevices Very sensitive to metal dielectric interface: Sensors 4

PLASMONICS that are excited if both frequency and wavevector match those of the SPP (propagating plasmon) c Ways to produce the extra k A prism A grating A defect Extra k the frequency matches that of the LSPP (localized plasmon) 5

MAGNETO-OPTICS New effect 1791-1867 Faraday effect: 1845 Bd Kerr effect: 1876 B 1824-1907 6

MAGNETO-OPTICS Kerr effect depends on relative orientation of B E ε k k E E ε k k z θ 0 θ 0 y M M M x Polar + i = f(m z ) Transverse R pp = f(m y ) Longitudinal + i = f(m x ) am am z 0 0 z 0 0 0 am 0 0 am 0 y y 0 0 0 0 am am x x 7

real mo imag MAGNETO-PLASMONICS Effects of magnetic field on optical properties of metals (Drude): x z y B Ag mo 0 0 mo 0 0 mo 2 2 2 p p i 2 2 2 2 ( ) 2 2 p c p c i 2 2 2 2 2 ( ) 30 20 10 0-300 1.0 0.5 r (Au) i (Au) r (Ag) i (Ag) c eb * m mo small for metals -600 Au, Ag 0.5 1.0 1.5 2.0 Energy (ev) 0.0 0.5 1.0 1.5 2.0 Energy (ev) ħω c = 0.115 mev (B=1 Tesla) 8

Reflectivity (%) mo M MAGNETO-PLASMONICS mo in noble metals is very small Solution: ferromagnetic metals 1.5 1.0 0.5 (Co) r (Co) i (Ag) r (Ag) 1 mo ( Co, Fe, Ni) M M ( B ~ 0.005 T ) mo sat ( Ag, Au) B -0.02 0.00 0.02 Magnetic field (Ts) 0.0 1.5 2.0 2.5 3.0 Energy(eV) 100 80 Ferromagnetic metals are very absorbent very broad plasmonic resonances 60 40 20 10 nm Co 50 nm Au 40 60 80 Incident angle 9

Kerr Rotation (deg) MAGNETO-PLASMONICS mo in noble metals is very small Solution: ferromagnetic metals Ferromagnetic nanowires Adv. Mat. 19, 2643 (2007) 0.1 0.0 Energy (ev) 4 3 2 Ni Bulk Wires Membrane -0.1 Ferromagnetic membranes Appl. Phys. Lett. 94, 062502(2009) 300 400 500 600 700 800 Wavelength (nm) No plasmon excitation Plasmon excitation 10

Reflectivity (%) MAGNETO-PLASMONICS Magnetoplasmonic materials: Hybrid ferromagnetic noble metal systems 100 80 60 40 20 22nm Au / 6 nm Co / 6nm Au 50 nm Au 40 60 80 Incident angle Fair plasmonic modes Good MO activity 11

Plasmon effects on the Kerr effect in nanostructured media Disordered Au/Co/Au nanosdiscs Small (2008) Au discs over Au/Co/Au film Opt. Express (2008) 12

Fabrication of Au/Co/Au dots Fabrication method: Sputtering+ colloidal lithography Au/Co/Au layer Polyelectrolyte - - - - - - - Latex spheres + + + + + + + Ar J.B. González et.al. Small 4,202 (2008) 13

Absorption (a.u.) Optical and magneto-optical analysis 2.0 1.5 60 Au/Co/Au 110 Au/Co/Au 85nm 1.0 0.5 1.6 2.0 2.4 2.8 3.2 Energy (ev) Peak in the LSPR spectral region Shifts to lower energy as D/H increases 85nm J.B. González et.al. Small 4,202 (2008) 14

( 2 + ) NP /(f*( 2 + ) CF ) Optical and magneto-optical analysis 5 4 3 2 1 60 110 1.5 2.0 2.5 3.0 Energy (ev) A large enhancement of the MO activity of the system is observed in the region corresponding to the excitation of the localized surface plasmon. J.B. González et.al. Small 4,202 (2008) 15

Dots over Au/Co/Au Square periodic array Au nanodiscs (Grating) (e-beam Φ:110nm,h 20nm,a:250-400nm) SiO 2 (e-beam ev.) variable thickness Au:6 Co:10 Au:16 Localized SP SPP Excited by periodic array Plasmon excitation: Glass k k G sp // light -Disc diameter: tunes LSP energetic position -Array periodicity (grating): tunes G vector and allows exciting SPP -Spacer thickness: tunes LSP vs SPP overlapping/interaction G. Armelles et. al. Opt. Express 16, 16104 (2008) 16

Rotation ( ) Ellipticity( ) Dots over Au/Co/Au 0.1 0.0 d = 300 nm t SiO2 = 50 nm -0.1-0.2-0.3-0.4 The magneto-optical activity of the system is strongly modified in the region corresponding to the localized surface plasmon of the gold disc. -0.5 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Energy (ev) G. Armelles et. al. Opt. Express 16, 16104 (2008) 17

r ps discs /rps no discs r pp discs /rpp no discs discs / no disc Dots over Au/Co/Au 1.2 1.0 0.8 The purely optical component, r pp, contributes to the magnetooptical activity enhancement due to the dip at the LSP position Optical contribution 0.8 0.6 0.4 0.2 The purely magnetooptical contribution, r ps, is modified around the LSP position k i k r r ps pp 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Energy (ev) MO contribution 1.2 0.8 0.4 G. Armelles et. al. Opt. Express 16, 16104 (2008) 18

r ps discs /rps no discs r pp discs /rpp no discs H (a.u.) H (a.u.) discs / no discs Dots over Au/Co/Au 4 2 0 Energy = 1.62eV Without Disks With Disks Au Co Au 70 80 90 100 x (nm) 4 2 0 Energy = 1.82eV Without Disks With Disks Au Co Au 70 80 90 100 x (nm) The purely magnetooptical contribution, r ps, is related to the redistribution of the electromagnetic field inside the Co layer E discs /E no discs 1.2 1.0 0.8 0.6 0.4 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Optical contribution 1.5 2.0 2.5 3.0 Energy (ev) 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Energy (ev) MO contribution 1.4 1.2 1.0 0.8 0.8 0.6 0.4 0.2 1.2 0.8 0.4 G. Armelles et. al. Opt. Express 16, 16104 (2008) 19

Reflectance Reflectance Application as a sensor Operation Principle of Surface Plasmon Resonance sensor Liquid ( l ) m l ksp k0 Resonant angle shift due to a l m Au layer ( m ) Glass Prism change in the refractive index 1,0 0,9 0,8 0,7 0,6 0,5 0,4 n 1 <n 2 0,3 0,2 0,1 1 2 0,0 55 60 65 70 75 80 85 90 Angle of incidence (deg) Real time monitoring of the refractive index change at a fixed angle 0,55 0,50 0,45 0,40 0,35 0,30 n 1 0,25 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 Time (min) n 2 Sensor Device : External Medium d Receptor Analyte SP k x Evanescent Field detects changes in the local refractive index m Metallic layer k xp 2 P sin Evanescent Field ~ 80 nm (45 nm Au, = 632 nm) 20

M (a.u.) R(M)/R(0) R( )/R(0) Reflectance Reflectance MOSPR: Angular derivative Au Au/F/Au Resonant angle depends on magnetization (M) k k k light // sp 0 sp k x (1 ) sp M k0 sp z x 1,0 0,5 0,0-0,5-1,0 y Magnetization switching angular derivative Rpp R ( M ) R ( M ) (0) -0,01 0,00 0,01 Magnetic Field (Teslas) B sin(ωt) pp 1.0 0.5 0.0 pp 40 45 Theta (deg) M x -M x inc 0.004 M z -M z 0.002 0.000 10 5 0-5 -10 43.8 44.0 44.2 TMOKE OPT DER Theta (deg) Fe 5nm 66 68 70 72 74 Theta (deg) J.B. González-Diaz et.al. Phys. Rev B76, (2007) 21

R(%) R(M)/R MOSPR vs. SPR Sharper angular curves (Angular derivative) Higher sensitivity n Emin 100 80 60 40 20 30 nm Au / 5 nm Fe / 5 nm Au 48 nm Au 55 60 65 70 75 Theta (deg) 0.01 0.00-0.01 S / S Emin 350 300 250 200 150 100 50 0 MOSPR SPR MOSPR SPR 5 10-6 1.5 10-5 TMOKE/noise R/noise -50 0.000 0.001 0.002 B. Sepulveda et al., Optics Letters 31 (2006) 1085 + Patent. n d 22

Conclusions Using materials exhibiting plasmonic and magneto optical activity simultaneously we have shown: Enhancement of MO activity due to SPP-Light coupling Magnetic field modifies the SPP momentum Applications Sensing Novel scheme exploiting: a) Electromagnetic field localization b) External modulation via magnetic field Optronics Communications: external control Photonics on silicon:potential structure for dynamic behaviour of plasmonic components Data storage: MO plasmon-mediated enhancement Enhanced magneto-optical media & patterned MO media 23

Acknowledgments A.Garcia-Martin J.Fernandez M.U.Gonzalez G.Armelles A.Cebollada Scientific staff J.M. Garcia-Martin J.B.Gonzalez E.Ferreiro R.Fermento PhD Students Post docs A.Vitrey Staff (Collaboration) J.V.Anguita Technician D.Meneses D.Martin A. Calle P.Prieto http://www.imm-cnm.csic.es/magnetoplasmonics 24

Acknowledgments U. Chalmers University of Toledo ICFO ICMM CIN2 University of Michigan 25

Acknowledgments EU Regional (CAM) www.nanomagma.org Nanomagnet National (MICINN,CSIC) Crimafot Bioptomag Funcoat Magplas 26

Magnetoplasmonics: fundamentals and applications http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas 27