Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Similar documents
Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Lecture 2: Double quantum dots

Magnetic Resonance in Quantum Information

Quantum manipulation of NV centers in diamond

Optically-controlled controlled quantum dot spins for quantum computers

Spin electric coupling and coherent quantum control of molecular nanomagnets

MOLECULAR SPINTRONICS. Eugenio Coronado

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond

Electron spin coherence exceeding seconds in high-purity silicon

DNP in Quantum Computing Eisuke Abe Spintronics Research Center, Keio University

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Magnetic Resonance in Quantum

The Development of a Quantum Computer in Silicon

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

1 Ioffe Physical-Technical Institute, St. Petersburg, Russia

Electron spin qubits in P donors in Silicon

Nearly-quantumless magnetic cooling. using molecules. Marco Evangelisti

TWO- AND THREE-QUBIT ROOM-TEMPERATURE GRAPHENE QUANTUM GATES. Daniela Dragoman 1 and Mircea Dragoman Bucharest, Romania

Quantum control of spin qubits in silicon

A single-atom electron spin qubit in silicon

Quantum Information Processing with Semiconductor Quantum Dots

QUANTUM CRYPTOGRAPHY QUANTUM COMPUTING. Philippe Grangier, Institut d'optique, Orsay. from basic principles to practical realizations.

Nuclear spin control in diamond. Lily Childress Bates College

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Lecture 8, April 12, 2017

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Lecture 18 Luminescence Centers

Towards quantum simulator based on nuclear spins at room temperature

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft


Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Experimental Quantum Computing: A technology overview

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Electron spins in nonmagnetic semiconductors

Precision sensing using quantum defects

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

INTRIQ. Coherent Manipulation of single nuclear spin

Quantum Dot Spin QuBits

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Квантовые цепи и кубиты

arxiv: v2 [quant-ph] 28 Nov 2017

Silicon-based Quantum Computing:

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Quantum computation and quantum information

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

Quantum Computation with Neutral Atoms

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR)

!. 2) 3. '45 ( !"#!$%!&&' 9,.. : Cavity QED . / 3., /*. Ion trap 6..,%, Magnetic resonance Superconductor

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Ultra-High-Sensitivity emiccd Cameras Enable Diamond Quantum Dynamics Research

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

arxiv:quant-ph/ v1 14 Sep 2006

Room-Temperature Quantum Sensing in CMOS: On-Chip Detection of Electronic Spin States in Diamond Color Centers for Magnetometry

Electrical quantum engineering with superconducting circuits

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing

Electron spin decoherence due to interaction with a nuclear spin bath

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

Quantum Optics with Electrical Circuits: Circuit QED

Photoelectric readout of electron spin qubits in diamond at room temperature

Spin dependent recombination an electronic readout mechanism for solid state quantum computers

arxiv: v2 [cond-mat.mes-hall] 26 Sep 2013

Superconducting Qubits Lecture 4

Michael Mehring Physikalisches Institut, Univ. Stuttgart, Germany. Coworkers. A. Heidebrecht, J. Mende, W. Scherer

phys4.20 Page 1 - the ac Josephson effect relates the voltage V across a Junction to the temporal change of the phase difference

Decoherence in molecular magnets: Fe 8 and Mn 12

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Decoherence-protected quantum gates for a hybrid solid-state spin. register

Enhanced solid-state multi-spin metrology using dynamical decoupling

arxiv: v1 [quant-ph] 11 Jun 2009

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Electrically Protected Valley-Orbit Qubit in Silicon

Coherent Control of a Single Electron Spin with Electric Fields

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Quantum information processing with trapped ions

Short Course in Quantum Information Lecture 8 Physical Implementations

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

High Field EPR at the National High. Johan van Tol. Magnetic Field Lab

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps

Supported by NSF and ARL

Chapter 8 Magnetic Resonance

Solid-State Spin Quantum Computers

Pulse techniques for decoupling qubits

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

On-Chip Quantum Nanophotonics: Challenges and Perspectives

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Optimizing a Dynamical Decoupling Protocol for Solid-State Electronic Spin Ensembles in Diamond

Spin-orbit qubit in a semiconductor nanowire

Distributing Quantum Information with Microwave Resonators in Circuit QED

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

Transcription:

Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

Quantum computers Process information using quantum laws Bit Qubit 1 R. P. Feynman, Int. J. Theoret. Phys. 21, 467 (1982) 0

Qubits Single qubits 1 0 R 0 H 1 1 0 0 1

T 2 (s) Qubits Single qubits DE /h 1-40 GHz 1 100 10 0 1 R 0 H 1 1 0.1 2006 2008 2010 2012 year 0 0 1 M. H. Devoret and R. J. Schoelkopf, Science 339, 1169 (2013)

Spin qubits Electron spin in a magnetic field B dc S = ½ g = 2 1 26 GHz/T DE = g B B dc 0 1.3 K/T

Spin qubits Electron spin in a magnetic field B dc B 1 e iwt S = ½ g = 2 1 Dt 0 I. I. Rabi, Phys. Rev. B 51, 652 (1937)

Spin qubits Electron spin in a magnetic field B dc B 1 e iwt En resonancia: w = DE/h S = ½ g = 2 1 Dt 0 I. I. Rabi, Phys. Rev. B 51, 652 (1937) 0 ( t) cos 2 R B h 0 e i ( t) ( t) sin 2 B1 13 MHz/mT 1

Decoherence T1 R 0 ( t) cos 2 0 e i ( t) ( t) sin 2 1

Decoherence T 2 R 0 ( t) cos 2 0 e i ( t) ( t) sin 2 1

Decoherence Two well defined states High quantum coherence: Q M 2RT2 10 6 Integration into a scalable architecture: Read-out Control Communicate T 2 R 0 ( t) cos 2 0 e i ( t) ( t) sin 2 1

Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

31 P donors in silicon Si 31 P +

31 P donors in silicon Si e - 31 P + B. E. Kane, Nature 393, 133 (1998)

31 P donors in silicon Si e - 31 P + Very low decoherence because of: T 2 1 s at T = 1.8 K Weak spin-lattice interactions Low concentration of e - spins (10 14-10 15 cm -3 ) Low concentration of nuclear spins (5% 29 Si) A. M. Tyrishkin et al., Nature Mater. 11, 143 (2011)

Read-out Translate spin state into charge current SET I SET A. Morello et al., Nature 467, 687 (2010)

Read-out & coherent control Translate spin state into charge current J. J. Pla et al., Nature 489, 541 (2012) SET I SET A. Morello et al., Nature 467, 687 (2010) Dt(s)

NV centers in diamond NV -

NV centers in diamond DE = 2.9 GHz H S = 1 g = 2 2 2 2 DS E( S S ) g HS z 3 A x y m S = 0 B m S = +1 m S = +1

NV centers in diamond 3 E m S = ±1 m S = 0 H S = 1 g = 2 LASER DE = 2.9 GHz 2 2 2 DS E( S S ) g HS z 3 A FLUORESCENCE x y m S = 0 B m S = -1 m S = +1

NV centers in diamond 3 E m S = ±1 m S = 0 510 14 cm -2 10 14 cm -2 10 13 cm -2 H S = 1 g = 2 LASER DE = 2.9 GHz 2 2 2 DS E( S S ) g HS z 3 A FLUORESCENCE x y m S = 0 B m S = -1 m S = +1 A. Gruber et al., Science 276, 2012 (1997)

Single-spin read-out m S = ±1 m S = 0 3 E 3 A m S = 0 LASER m S = -1 m S = +1 1 m S = 0 0 3 A Spin-dependent fluorescence spin read-out and state initialization F. Jelezko et al., Appl. Phys. Lett. 81, 2160 (2002)

Single-spin read-out m S = ±1 m S = 0 3 E 3 A m S = 0 LASER m S = -1 m S = +1 1 m S = 0 0 3 A Spin-dependent fluorescence spin read-out and state initialization F. Jelezko et al., APL 81, 2160 (2002)

Coherent control m S = ±1 m S = 0 3 E 3 A m S = 0 LASER m S = -1 m S = +1 1 Dt m S = 0 0 3 A Microwaves 2.9 GHz Dt(ns) F. Jelezko et al., Phys. Rev. Lett 92, 076401 (2004) L. Childress et al., Science 314, 281 (2006)

Decoherence Substitutional N atoms (s = ½): spin bath Polarization (high B dc, low T) R. Hanson et al., Science 320, 352 (2008)

Decoherence Substitutional N atoms (s = ½): spin bath Dynamical decoupling Polarization (high B dc, low T) R. Hanson et al., Science 320, 352 (2008) G. De Lange et al., Science 330, 60 (2010)

Spin qubits in semiconductors Two well defined states High quantum coherence: Integration into a scalable architecture: Read-out Control Communicate Further reading (reviews) R. Hanson & D. Awschalom, Coherent manipulation of single spins in semiconductors, Nature 453, 1043 (2008) J. J. L. Morton, D. R. McCaney, M. A. Eriksson & S. A. Lyon, Embracing the quantum limit in silicon computing, Nature 479, 345 (2011) D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, J. R. Petta, Quantum Spintronics: Engineering and Manipulating Quantum Spins in Semiconductors, Science 339, 1174 (2013)

Outline Quantum information with spins 1 0 Atomic defects in semiconductors Molecular quantum bits & gates

Molecular spin qubits Leuenberger and Loss, Nature 410, 789 (2001) Mn 12 S = 10 g = 2 m=-10 - + m=+10

Molecular spin qubits Leuenberger and Loss, Nature 410, 789 (2001) Cr 7 Ni, S = 1/2 A. Ardavan et al. Phys. Rev. Lett. 98, 057201 (2007); ibid (2012). Mn 12 S = 10 g = 2 V 15, S = 1/2 m=-10 - + m=+10 S. Bertaina et al. Nature 453 (2008)

Single-ion magnets Ligand shell (non magnetic) Lanthanide (Er, Ho, Gd, Tm ) = g J J LnW 10 LnW 30 17.9 Å Some outstanding characteristics Simple (just 1 magnetic atom) Weak interactions Magnetic solubility Nuclear-spin free systems Control over parameters M. A. AlDamen et al, J. Am. Chem. Soc. 130, 8874 (2008); M. A. Aldamen et al, Inorg. Chem. 48, 3467 (2009)

Single-ion magnets Ligand shell (non magnetic) Lanthanide (Er, Ho, Gd, Tm ) = g J J LnW 10 LnW 30 17.9 Å Some outstanding characteristics Simple (just 1 magnetic atom) Weak interactions Magnetic solubility Nuclear-spin free systems Control over parameters M. A. AlDamen et al, J. Am. Chem. Soc. 130, 8874 (2008); M. A. Aldamen et al, Inorg. Chem. 48, 3467 (2009)

Molecular design of spin qubits GdW 10 GdW 30 J z J y 4 K 0.5 K Easy axis Easy plane

S z (a.u.) Coherent control: pulsed EPR 1.5 1.0 0.5 0.0-0.5-1.0-1.5 Rabi Oscillations H=1000 G (16_32) ns pulse length T 2 0.5 s 0 200 400 600 800 Time(ns) J y 6.5 GHz M. J. Martínez-Pérez, et al. Phys. Rev. Lett. 108, 247213 (2012).

Coupling to Q dots or C nanotubes Read-out and coherent manipulation I M. Urdampilleta et al., Nature Mater. 10, 502 (2011); R. Vincent et al., Nature 488, 357 (2012)

Universal CNOT quantum gate control target A. Barenco et al., Phys. Rev. A 52, 3457 (1995)

Universal CNOT quantum gate control target 1. Two qubits 2. Coupling 3. Asymmetry A. Barenco et al., Phys. Rev. A 52, 3457 (1995)

Molecular design of two-qubit gates Dinuclear [Tb] 2 complex Linked to three asymmetric H 3 L ligands Two anisotropic spins in different coordinations D. Aguilà et al, Inorg. Chem. 49 (2010) 6784 G. Aromí, D. Aguilà, P. Gámez, F. Luis, and O. Roubeau, Chem. Soc. Rev. 41, 537-546 (2012).

Energy(K) CNOT gate H ( H J H J ) A ( J I J I ) m6 2J exjz1j z2 gjb z1 z1 z2 z2 hf z1 z1 z2 z2 4 2 0-2 -4 CNOT 0.0 0.2 0.4 0.6 0.8 F. Luis et al, Phys. Rev. Lett. 107, 117203 (2011). 0 H (T)

Molecular spin qubits Two well defined states High quantum coherence Integration into a scalable architecture: Read-out Control Communicate Further reading (reviews) F. Troiani & M. Affronte, Molecular spins for quantum information technologies, Chemical Society Reviews 40, 3119 (2011) G. Aromí, D. Aguilà, P. Gámez, F. Luis & O. Roubeau, Design of magnetic coordination complexes for quantum computing, Chem. Soc. Rev. 41, 537 (2012). Molecular Magnets: Physics and Applications, edited by J. Bartolomé, F. Luis & J. F. Fernández, Springer (January 2014). ISBN 978-3-642-40608-9