Advanced Treatment of Sewage Using a Magnetic Fluid Separation

Similar documents
An Example file... log.txt


ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

A Study on Dental Health Awareness of High School Students

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Examination paper for TFY4240 Electromagnetic theory

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

Framework for functional tree simulation applied to 'golden delicious' apple trees

An Introduction to Optimal Control Applied to Disease Models

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Optimal Control of PDEs

Vectors. Teaching Learning Point. Ç, where OP. l m n

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Research of Application the Virtual Reality Technology in Chemistry Education

Removal of Suspended Solids in Livestock Wastewater Using Magnetic Fluid Separation

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Planning for Reactive Behaviors in Hide and Seek

Dimethyl Ether Production using a Reactive Distillation Process

TELEMATICS LINK LEADS

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

ADVANCES IN MATHEMATICS(CHINA)

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Constructive Decision Theory

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Oxygen Transfer Characterization in Aeration Tank for Oxidation Treatment of Water Pollutants

The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

New BaBar Results on Rare Leptonic B Decays

cº " 6 >IJV 5 l i u $

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Matrices and Determinants

4.3 Laplace Transform in Linear System Analysis

A Functional Quantum Programming Language

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

This document has been prepared by Sunder Kidambi with the blessings of

ETIKA V PROFESII PSYCHOLÓGA

Damping Ring Requirements for 3 TeV CLIC

Loop parallelization using compiler analysis

Preparation of Hydrophilic Inorganic-Organic Hybrid Coating Solutions by Sol-Gel Method

SCOTT PLUMMER ASHTON ANTONETTI

Modeling of the Thermal Behavior of an Electric-Vehicle Battery

Downloaded from pdmag.info at 18: on Friday March 22nd 2019

Design of the Triple and Quadruple Fixed-Bed Catalytic Reactor for Phthalic Anhydride Production

* +(,-/.$0 0,132(45(46 2(47839$:;$<(=

Redoing the Foundations of Decision Theory

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

â, Đ (Very Long Baseline Interferometry, VLBI)

T h e C S E T I P r o j e c t

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Lower Austria. The Big Travel Map. Big Travel Map of Lower Austria.

New method for solving nonlinear sum of ratios problem based on simplicial bisection

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner


A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

( ) Chapter 6 ( ) ( ) ( ) ( ) Exercise Set The greatest common factor is x + 3.

Ú Bruguieres, A. Virelizier, A. [4] Á «Î µà Monoidal

- (II) ( , )

!!"# $% &" ( )

1. CALL TO ORDER 2. ROLL CALL 3. PLEDGE OF ALLEGIANCE 4. ORAL COMMUNICATIONS (NON-ACTION ITEM) 5. APPROVAL OF AGENDA 6. EWA SEJPA INTEGRATION PROPOSAL

P a g e 5 1 of R e p o r t P B 4 / 0 9

Optimizing Stresses for Testing DRAM Cell Defects Using Electrical Simulation

SOLAR MORTEC INDUSTRIES.

Sample Exam 1: Chapters 1, 2, and 3

Building Products Ltd. G Jf. CIN No. L26922KA199SPLC018990

DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

. ffflffluary 7, 1855.

Optimization of a parallel 3d-FFT with non-blocking collective operations

2013 SIMULIA Regional User Meeting

ACS AKK R0125 REV B 3AKK R0125 REV B 3AKK R0125 REV C KR Effective : Asea Brown Boveri Ltd.

Executive Committee and Officers ( )

A Comparative Study on High School Chemistry Curriculum in Korea and Japan

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

A General Procedure to Design Good Codes at a Target BER

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

Surface Modification of Nano-Hydroxyapatite with Silane Agent

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

F O R SOCI AL WORK RESE ARCH

A Theory of Universal AI

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

Unit 3. Digital encoding

APPH 4200 Physics of Fluids

Stochastic invariances and Lamperti transformations for Stochastic Processes

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

Transcription:

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000, pp. 739-744 (Journal of the Korean Institute of Chemical Engineers) * ** * ** (2000 2 18, 2000 8 28 ) Advanced Treatment of Sewage Using a Magnetic Fluid Separation Yong-Ha Kim, Pyoung-Mo Yeo, Su-Hee Shin, Kuen-Hack Suh, Hang-Goo Kim* and Chang-Sup Oh** Department of Chemical Engineering, Pukyong National University, Pusan 608-739, Korea *Smelting Reduction Project Team, Research Institute of Industrial Science and Technology, Pohang 790-330, Korea **Department of Chemical Engineering, Hoseo University, Asan 336-795, Korea (Received 18 February 2000; accepted 28 August 2000)!"# $% & ' () (*+,-. / 01 23+ 45, 6 + 7 $% + 89 -, : ; "<= />?. @A+, 6 2B CD( + E7F COD G H7F+ 0IJ K(, 89 -, LM N= % O9,+ 45 P QR+ ST UV(W?. % TCOD, ICOD X H7F + E7F+ YZ0I.[ \ 7 ] N= 45() ^ COD F H7+ _`J VaF b TYc def, 2g 45h& TCOD, ICOD X H7+ i. jk l e. *mn?. o LMp + E7 20 g/m 3, TCOD 60 g/m 3, H7 16 NTU2(. q d + 7 :;. 89 -,+ "< Vr92 s#t?. <=9 :b+ uv2 jw + xy 89 -, % TCOD+ zv" _`J {= 7+ }2 ~?. Abstract A magnetic fluid separation is applied to the advanced treatment of sewage for removing the suspended solids which discharged as being entrained in the effluent from the final settling pond. In this study, the correlation with the concentration of suspended solids in the sewage and COD, with the solid concentration and turbidity, and the effects of operating parameters on the removal of the pollutant materials from the sewage were investigated. It is expected that COD and turbidity in sewage can be reduced by the removal of suspended solids in the sewage. And in result, turbidity was most strongly affected by the removal, and followed by ICOD and TCOD. In the present study, the concentration of suspended solids, TCOD and turbidity could be kept below 20 g/m 3, 60 g/m 3 and 16 NTU, respectively. The feasibility, therefore, of the magnetic fluid separation as an attractive technology for the advanced treatment of sewage was verified. However a special treatment for the extra reduction of TCOD in the clarified sewage is necessary. Key words: Sewage, Magnetic Fluid Separation, Advanced Treatment, Suspended Solids, COD, Turbidity E-mail: yhkim@mail.pknu.ac.kr 1. 1 4-5%. 1980 10,000! m 3 /"#$ % & 1990 '() 15,000! m 3 /"*+,-. /0( 2,600! m 3 /", 1997), 1.0( 200! m 3 /", 1997) 2 34 5 %!, 6 789 :;<=) >?@ AB>. % 78 CD) E 0 FG HI JK LM N OP) 78Q%) R SI J. TU VPW ) %X YZ<V[\]) ) 7^ _` YZa bw Mcd e+, fg 2 hi 'ijk_ lmn1?m] YZ %) o pq D<rs- tu%) v A< [1]. 7^ YZ%) wx ey z;{) Q} 7 Y Z+ ~ w ) A ƒ 7 ˆ ;RŠ } Œ ˆ ^ eyž K e m] Y Z% %) %K]- u z;{ š SM+ 739

740 \ VP œ; ž [2]. Ÿ u YZ z;{- YZw \]-) Ÿ+x Rƒ ƒw Ÿ+ w,? x ƒ w Q}9 ª+%. «2ª YZ ') O? 9 Ž ] %) Oˆ Q?@(suspended solids, SS) 3W. Q?@I t BOD> ± ²[ M³, Q?@ \] 3W ) @ ;ˆ µ G BOD z< @; W YZ BOD ^ S) > ƒd [3]. > 7 Œ 1, 2ª YZ _ ` Q ¹?@ COD (P) A W- º»9 O¼) «D [4]. Q?@ @½%] G 7z; <V Œ u z;{ 2ª YZ^ t\] w @ƒ(q?@:20 g/m 3, BOD: 20 g/m 3 )*+ ¾ ƒ À+ ~. ÁŸK rskap ª 5; 2000 1 1"QÃ) QÄ9 ÅQ%ƒ YZ<V 2\] e m] 78zD^ H ) o sat QÆ ÇjD "{^ a o[5, 6]. 7i0q Q ƒ?@9 A %)È É 9 ¾Ê DYZ w \]-) :Ëx, }Zx, ÌÍÎÏx 2 \K, ÐÏ Œ + Z A Q} 'ijk_ YZ<V-) _ÑËx9 %Ë 2ª YZ' Q?@9 A 3\]Ò BOD, COD DY Z^ %ƒd. Ÿ ËxI ÎÏx FG A ÓÔI S+[ 7 sõ) Ö CD ; ØÙ Ú š%, Ë g 2\] G ÐÏF SM+) A +t. Ë 2[7]I Q ¹? 3 0 ' O} ^ ÛÖ%Ë g(%, Q ¹? O} van der Waals Ü hi Ì ÍÙ µ %Ë Q ¹?, O} QÝ Þ ¹ Fig. 1- «) 6 h ßà áâ V P ãä\] 9 Ú<å Í }Z%) w \] 0q Q ¹?9 ÓÔt\] ÁZ e%æ A ç39 èé 6. ê ëì-) 7q Q?@ < E 0q Q ¹? Ú" %æ %K } ] «) - hi }Z ƒí9 7 DYZ t 3 W-, 2ª YZ îu%) Q ¹? CD COD ÁZ ïd N^ {ð%, }Z 7q Q ¹? A ç 9 ñ%. W- Fig. 1. Principles of magnetic fluid separation. 38 5 2000 10 Fig. 2. Schematic diagram of experimental apparatus. 1. Magnetite 6. Magnet set 2. Sewage 7. Clarified water 3. Mixing tank 8. Valve 4. Pump 9. Magnetite+SS sludge 5. Magnetic fluid separation column 7q Q ¹? A ò {/»9 Šót\] ô%ë 7 DYZ }Z VF tz {/{ n A<^ õt\]. 2. 2-1. ê Šó ð }Z RP) Fig. 2- «) 6 h }Zö, 7 O} g( ø, ùu(7+ O} ) B úû, ã ˆd 2\] ì W. }ZöI s 5cm, S 1m Møü \] Aµ#. 7 O} ùu ) g( ø]qã úû^ s %Ë }Zö %Q] Ö W Q] ßý). ê Šó- ð ãi ] 2.3 cm, ˆ] 4cm, `4 0.9 cm þ, ¹, Ù 1,000 Gauss 5D»ì ã, ã ˆd) ã 3l^ ƒ }Zö á â >Ž^ 120D D] P%Ë ì %ÿ. ã ˆd) 1 w 0.15 m \] 5e VPW \ 7 O} ùu) 9 ent\] %,- zaæ. 2-2. ê Šó ð 7) A fgq.;x9 %) 7 YZR XÎÏ YZ, 2ª YZ] I z t\] Ú ) sõ[ %ÿ. hi 7 "z O} ^ ÛÖ% 700 rpm :D] 5} zd g(<å F ùu) peristaltic pump G }Zö %Q] Ö<å Fig. 1 h Q] ßýæ %ÿ. Bö :I 0.23-0.86 cm/s(ùu B:D: 0.27-1.01 l/min) - { %ÿ. O} ]) ô Ös 3.2 µm < ÁEd^ ð %ÿ \, Q ¹? O} @F) 0.5-2.1 - { %ÿ. {n- Šó< I 30} zd] %ÿ, < ) 10} \] 2] %ÿ. 7 }Zö9 YZq Q ¹? CD) ASTM D2540 G,;ft.j ì(cod)i Open reflux method (K 2 Cr 2 O 7 method) G, ïd) HACH 2100N Turbidimeter^ %Ë, ÖD) SHIMADZU SALD-20019 %Ë }ã%ÿ.

Table 1. Characteristics of effluent of the final settling pond Items SS(Suspended Solids), g/m 3 TCOD(Total Chemical Oxygen Demand), g/m 3 SCOD(Soluble Chemical Oxygen Demand), g/m 3 Turbidity, NTU 741 Value Range Average 28-268 64-365 18-120 14-130 94 1400 53 49 Fig. 4. Particle size distribution of suspended solids in the effluent of final settling pond and magnetite powders. Fig. 3. TCOD, ICOD and turbidity vs. concentration of SS in effluent of final settling pond. 3. 3-1. ËŸ ª 7? I Table 1 h. 7 @ ; <ƒm] º J#)È ) fgò "z%+ ~ƒ \] «. ê 7YZR W- 7 ô @I Q ¹? CD 94 g/m 3, TCOD 140 g/m 3, ICOD 87 g/m 3, ïd 49 NTU ÁZ ph 7.48] w @ ƒ \] DYZ ì). Fig. 3I 7 @, TCOD, ICOD ÁZ ïd 7q Q ¹? CD N^ KE o. TCOD, ICOD ÁZ ïd W sõk Q ¹? CD Ft\] %), t N^ «ÿ. 7 ' Q ¹? CD TCOD, ICOD Œ ïd F) 1.49, 0.92 ÁZ 0.52], ] Ò TCOD Q ¹? CD R N^ 9. ICOD/TCOD I 0.62] Ï ƒ?@ ' Ö ƒ?@ 62%, K+ 38% G ƒ?@] î U%. hi 7 W- Q ¹? CD Çj TCOD, ICOD, ïd) 0.67, 0.74, 0.98 ƒƒ] t\] Çj%) s9 «ÿ. ) z;{ 2- X ÎÏ{ 7 3 Q ¹?9 DYZ 29 G A %æ, COD ïd Çj^ w @9 < 9 O%, A Ó) TCOD, ICOD ÁZ ïd!-] SM @ o\] ƒ. 3-2. Fig. 4) 7q Q ¹? O} ] ð ÁEd ÖD} ^ KE o. ô Ös 48 µm, s 154 µm 7q Q ¹?I 0.41-468 µm Fgt "I ÖD} ^ + )È Ëƒ- Àæ ÎÏ+ ~), Stokes» G) 100 µm % Q ¹? 70%^ ª+% W ëî5 7 z Fig. 5. Photos of floc before and after magnetic flocculation obtained from microscope(400). ; TŠt\] Õ W#Ð {n. O} ]Ò ÁE d) ô Ös 3.2 µm, si 3.4 µm] 7q Q ¹?) ÖD} Œ ô Ös- $% ª^ «. 7 Á Ed^ ÛÖ%Ë g(%ÿ9 ¹ ) ÞI Fig. 5- «) 6 h º Ö, Q ¹?, µi Ö, ÁEd QÝ ¹&] KE'. hi Þ áq- R9 Ž#9 sõ, QÝ ÁEd ;,- Ï t\]) Þ %K ; W ã QÝ Í) o. 3-3. / Fig. 5- «) 6 h ê ëì }Z-) ` X }, 7q Q ¹? W( X O} )K ÁZ W*æ QÝW )^ ƒê\] %. - Ót \] Q ¹?9 A %ƒ G-) Q ¹?, 5 O } ^ L, ÁZ 5Ù%æ QÝ<å ; SI Þ9 ¹ <å+. Þ ¹ ) van der Waals Ü(F vw ) hi ÌÍÙ, Á Z Þ Í) Ù(F m ) N. ` } ð Z r sõ ð µ %) van der Waals ÜI (1) h, (+à a Ö G+) ÙI (2) h z. F vw = α r 2 (1) 2 F m = --πa 3 µ 3 o x ( H 2 ) (2) - "z R, H Ž#9 "z Q, Q ¹?, QÝ) O} - ` } ð Z.W W ÌÍÙ 5G+ Þ Q, %æ W Ù /+,- 0 Àæ ã Íæ. HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

742 Fig. 6. Effect of magnetite/ss mass ratio on the changes in concentration of SS. Fig. 8. Effect of magnetite/ss mass ratio on the changes in turbidity. J, O} ÛÖ ) O} ÛÖ F I?1 23t\] Þ 4+ &9 <=æ W 5 n{ ÁZ 2 YZ Bz- YZ Q% /+æ ) A. ÁŸ6] Q ¹? A ÓÔ F -,9 #%Ë 7q Q ¹? -9 ƒ%ë O} tz ÛÖ F^ 7z%) o Õ '%. hi - 7q Q ¹? CD, 7 e Q, 3W ) Q ¹? @ G ÛÖ) ÁEd @F 7q Q ¹? CD, TCOD ÁZ ïd ; ^ c8%) oi Õ '%. Fig. 6I ÁEd/Q ¹? @F ; 9 Q ¹? CD ;^ KE o. 7q Q ¹? CD) 72-187 g/m 3 #\ Bö :I 0.23 cm/s 0.56 cm/s] %ÿ. Bö : 0.23 cm/s sõ) ê Šó- ÁEd/ Q ¹? @F Nb YZq Q ¹? CD) 20 g/m 3 %^ «,- w ƒ 3^ 20 g/m [:%) 7^ «ÿ. Bö : 0.53 cm/s] SM sõ, ÁEd/Q ¹? @F 1 %-) YZq Q ¹? CD 40 g/ m 3 *+ %) s9 «ÿ\k ÁEd/Q ¹? @F %,- YZq Q ¹? CD ª HM @F 2 zd #9 sõ) w ƒ 3^ 20 g/m [:39. Fig. 7 8I ÁEd/Q ¹? @F ; 9 7q TCOD ïd ;^ KE o. 7q TCOD) 100-220 g/m 3, ïd) 48-96 NTU#\, Bö :I 0.23 cm/s 0.56 cm/s] %ÿ. Fig. 3- ; ] 7q Q ¹? C Fig. 7. Effect of magnetite/ss mass ratio on the changes in TCOD. 38 5 2000 10 Fig. 9. Effect of superficial liquid velocity on the changes in concentration of SS. D Çj3 TCOD ïd _` Çj%ÿ. ÁEd/ Q ¹? @F 1%- TCOD) 60-80 g/m 3, ïd) 8-22 NTU (,, ÁEd/Q ¹? @F 2*+ SM+, - TCOD) 40-60 g/m 3, ïd) 8-14 NTU*+ HM<. sõ \] N.) A ÓÔI TCOD sõ ô 69%, ÁZ ïd) ô 85%] ) 7q Q ¹? A < ïd A Ó TCOD sõ«s9 KEq) o\] ) Fig. 3- ; 7 "P%ÿ. C i C o C i Removal Efficiency(%) = --------------- 100 (3) 3-4.!"# Fig. 9) Bö : ; 9 7q Q ¹? CD ;^ KE o\] Q ¹? CD) 72-187 g/m 3, ÁE d/q ¹? @F) 0.5, 1, 2] %ÿ. ê Šó- Bö : \] 0.86 cm/s^ ƒ< S 100 cm }Zö q Ùft < I 1.9}, ÁZ 7 YZ:D ) 1.4 m 3 /". ê Šó{n-) ÁEd/Q ¹? @ F 0.5 sõ Bö : 0.24 cm/s- 0.55 cm/s] SM+,- Q ¹? CD 20 g/m 3-40 g/m 3 *+ #+ [ ÁEd/Q ¹? @F 1-2] %,- YZq Q ¹? CD) Bö : Nb 12-20 g/m 3 - Fgt "zg=9. ê Šó- Bö : Ù»%- 7q Q ¹? }Z^ A ì) ÁEd/Q ¹? j @F) 1] I Q ¹? CD 1,500-4,200 g/m 3 ŠA1.0K295-670 g/

Fig. 10. ICOD and SCOD vs. TCOD in influent and effluent of magnetic fluid separator. m 3 -WR!r }Z- 7 D "P [8, 9]. 3-5. TCOD$ ICOD %& 7i 0 ' îu%) ƒ? >9 KEq) >;ft.jì (Total Chemical Oxygen Demand, TCOD)I Ë ' 3%) G ƒ?@ } G) o(soluble Chemical Oxygen Demand, SCOD)? Ö ƒ?@ } G) o(insoluble Chemical Oxygen Demand, ICOD)\] }. - >;ft.jì, TCOD) (4) h KE@. TCOD = SCOD + ICOD (4) Fig. 10I 7 }Z^ YZ Ï W- TCOD' ICOD SCOD ;^ KE o. }Z^ G TCOD ) YZÏ 70-350 g/m 3-40-80 g/m 3 \] HM<. YZ 7q ICOD/TCOD F) 0.23\] ^ YZÏ 7q ICOD/ TCOD F 0.62 Fg%, }Z^ G Ö? ƒ? A,- Ï t\] TCOD Çj^ A9. J YZ Ï W- SCOD Çj) Õ OO Fig. 11. TCOD, ICOD and turbidity vs. concentration of SS in clarified water. Table 2. Correlations between SS and TCOD, ICOD, turbidity in influent and effluent Items TCOD(Total Chemical Oxygen Demand), g/m 3 ICOD(Insoluble Chemical Oxygen Demand), g/m 3 Turbidity, NTU 743 È ] G YZ 7q TCOD' SCOD ª+%) FÔ YZ Ï FG 2] SM<. 3-6. '($ TCOD, ICOD ) *($ +%%& 7q Q ¹?I Fig. 3- «) 6 h 7q COD ï D º»9 OPƒ Q ¹? CD ;^ «78? A zd^ za. Fig. 11I }Z] YZ 7 q Bî%) Q ¹? CD TCOD, ICOD Œ ïd N^ KE o. Q ¹? CD G TCOD, ICOD, ï D _` YZÏ 7- C+] t N^ «ÿ. }Z^ YZq Q ¹? CD Çj TCOD, ICOD, ïdd 0.35, 0.77, 1.05 ƒƒ^ Çj%) s 9 «ÿ. Table 2- «) 6 h 7 YZÏ YZ _` Q ¹? CD ; G ïd»9 R L D, ICOD, TCOD!\]»9 %æ D) o\] KE'. 7 YZÏ YZ^ Fg%, Q ¹? CD ; G ICOD ïd Ç jƒƒ) YZ ËQ Nb Ú" 9 «)(, TCOD sõ) YZÏ 0.67- YZ) 0.35] øæ Çj%ÿ. ) }Z 7 DYZ- Bö : ÇjK ÁEd/Q ¹? @F^ <å YZq Q ¹? CD^ ] H WD TCOD Çj Ó) ø+ ~9 O. hi TI TCOD Q} SCOD] îu% W Q ¹? O} ð Þ ¹ 9 ÏA{n%) }Z t A Dƒ. - @ rs78 ka 5; F%Ë YZq TCOD 9 0E H ƒ G-) SCOD^ ì % ) G?@9? \] 6F+ ÌÍ, }Z, σ}G 2 md wx 5ìW+. 4. 7 O?.;YZ< ÎÏ{- ÎÏ+ G w 3W ) Q ¹?9 "(t 0q Q ¹? Ú"%æ %K } ] «) - A, 7 D YZ 0q Q ¹? }Z ƒí9 t G «H. z ;{ X w, 2ª YZ îu%) Q ¹? CD COD Œ ïd N^ {ð%, }Z q 7 8 } A {/»9 ô ê ëì- IW 71I h. (1) 7q TCOD, ICOD ÁZ ïd _` Q ¹? CD N^ «ÿ\, 7q Q ¹? CD Çj TCOD, ICOD, ïd) 0.67, 0.74, 0.98 ƒƒ] t \] Çj%ÿ. ) X ÎÏ 7 3 Q ¹?9 DYZ 29 G A %æ, COD ïd Çj^ @ 9 < \, A Ó) TCOD, ICOD ÁZ ïd!-] SM+) o\] KE'. (2) ÁEd/Q ¹? @F 1 sõ, ê Šó Bö : {n- Q ¹? CD) 20 g/m 3, TCOD) Influent Effluent Slope R 2 Slope R 2 0.67 0.74 0.98 0.75 0.61 0.94 0.35 0.77 1.05 0.53 0.51 0.72 HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

744 60 g/m 3, ïd) 16 NTU%] +a W 7 DYZ ƒí ]Ò }Z t ç 9 ñ%ÿ. (3) 7 }Z YZq Q ¹? CD^ ] H WD TCOD Çj Ó) ø+ ~H)È ) YZq TCOD 77% G ƒ?@ƒ. - @ rs78 ka 5; F%Ë G ƒ?@ YZ md wx 5ìW+. a : radii of particles [m] C i : concentration of pollutants in the influent [g/m 3 ] C o : concentration of pollutants in the effluent [g/m 3 ] F vw : van der Waals force [N] F m : magnetic force [N] H : magnitude of the magnetic field vector [A/m] ICOD : insoluble chemical oxygen demand [g/m 3 ] r : distance between two powders [m] SCOD : soluble chemical oxygen demand [g/m 3 ] TCOD : total chemical oxygen demand [g/m 3 ] α : van der Waals constant for attraction [Nim 2 ] µ o : permeability of free space(4jk10 7 ) [V s/am] χ : volume magnetic susceptibility [-] 1. Park, Y. S., Ahn, K. H., Suh, J. H., Choi, Y. C., Choo, S. R. and Song, S. K.: HWAHAK KONGHAK, 35, 8(1997). 2. Samhwan Tech. Research Inst.: J. Environ. Hi-Technol. 10(January, 1997). 3. Yamamoto, Y.: J. Environ. Hi-Technol., 29(January, 1997). 4. Tiehm, A., Herwig, V. and Neis, U.: Wat. Sci. Tech., 39, 99(1999) 5. Park, J. W. and Song, Y. H.: J. Korean Soc. Environ. Engineers, 20, 305(1998). 6. The Ministry of Environment: The Water Quality Preservation Act (1998). 7. Yeo, P. M., Kim, Y. H., Suh, K. H. and Suh, I. K.: Theories and Applications of Chemical Engineering, 3, 2933(1997). 8. Kim, Y. H., Suh, K. H. and Oh. C. S.: HWAHAK KONGHAK, 38, 277 (2000). 9. Kim, Y. H., Yeo, P. M., Suh, K. H., Kim, H. G., Chung, U. C. and Kim. S. H.: J. Korean Fish. Soc., 32, 49(1999). 38 5 2000 10