EE105 Fall 2015 Microelectronic Devices and Circuits. LTI: Linear Time-Invariant System

Similar documents
Consider a system of 2 simultaneous first order linear equations

Frequency Response. Response of an LTI System to Eigenfunction

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields

Physics 160 Lecture 3. R. Johnson April 6, 2015

Chapter 9 Transient Response

Advanced Queueing Theory. M/G/1 Queueing Systems

t=0 t>0: + vr - i dvc Continuation

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Chapter 7. Now, for 2) 1. 1, if z = 1, Thus, Eq. (7.20) holds

Theoretical Seismology

Lecture 3: Phasor notation, Transfer Functions. Context

The Variance-Covariance Matrix

( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals

ELEN E4830 Digital Image Processing

3+<6,&6([DP. September 29, SID (last 5 digits): --

Chapter 13 Laplace Transform Analysis

Chapter 6: AC Circuits

Version 1.0 VLADIMIR V. KOROSTELEV. A Primer in Quantum Mechanics for NMR Students

EE 247B/ME 218: Introduction to MEMS Design Lecture 27m2: Gyros, Noise & MDS CTN 5/1/14. Copyright 2014 Regents of the University of California

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

innovations shocks white noise

(heat loss divided by total enthalpy flux) is of the order of 8-16 times

10.5 Linear Viscoelasticity and the Laplace Transform

Vertical Sound Waves

A L A BA M A L A W R E V IE W

9. Simple Rules for Monetary Policy

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

On the Existence and uniqueness for solution of system Fractional Differential Equations

F O R SOCI AL WORK RESE ARCH

The Fourier Transform

Control System Engineering (EE301T) Assignment: 2

Conventional Hot-Wire Anemometer

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Example: MOSFET Amplifier Distortion

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

t the propensity to consume the resource good. Maximizing U t in (9) subject to the budget constraint (8) yields

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

Electromagnetic waves in vacuum.

CSE 245: Computer Aided Circuit Simulation and Verification

State Observer Design

EE"232"Lightwave"Devices Lecture"16:"p7i7n"Photodiodes"and" Photoconductors"

Lecture 4: Laplace Transforms

Transfer function and the Laplace transformation

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 2: Semi-Classical Light- Matter Interaction

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

8-node quadrilateral element. Numerical integration

Fluctuation-Electromagnetic Interaction of Rotating Neutral Particle with the Surface: Relativistic Theory

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

MECH321 Dynamics of Engineering System Week 4 (Chapter 6)

Reliability Analysis of a Bridge and Parallel Series Networks with Critical and Non- Critical Human Errors: A Block Diagram Approach.

9.5 Complex variables

Lecture 2: Current in RC circuit D.K.Pandey

Control Systems. Mathematical Modeling of Control Systems.

( ) ( ) + = ( ) + ( )

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Chapter 7 Stead St y- ate Errors

2/20/2013. EE 101 Midterm 2 Review

Lecture 12: Introduction to nonlinear optics II.

OUTLINE FOR Chapter 2-2. Basic Laws

EXERCISE - 01 CHECK YOUR GRASP

P a g e 5 1 of R e p o r t P B 4 / 0 9

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

Elementary Differential Equations and Boundary Value Problems

1 Finite Automata and Regular Expressions

Module 1-2: LTI Systems. Prof. Ali M. Niknejad

CONTINUOUS TIME DYNAMIC PROGRAMMING

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

Jones vector & matrices

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

LINEAR SYSTEMS THEORY

ECE 3600 Lumped-Parameter Transmission Line Models b

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

9.4 Absorption and Dispersion

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

ELEG 205 Fall Lecture #13. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302)

1973 AP Calculus BC: Section I

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

Random Process Part 1

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

Logarithms. Secondary Mathematics 3 Page 164 Jordan School District

An Example file... log.txt

Math 656 March 10, 2011 Midterm Examination Solutions

Homework: Introduction to Motion

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

CHAPTER 10: LINEAR DISCRIMINATION

Chap 2: Reliability and Availability Models

T h e C S E T I P r o j e c t

ELECTRONIC DEVICES BIPOLAR JUNCTION TRANSISTOR. Piotr Dziurdzia, Ph.D C-3, room 413; tel ,

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

Transcription:

EE5 Fall 5 Mrolron Dvs and Crus Prof. Mng C. Wu wu@s.rkl.du 5 Suarda Da all SD - LTI: Lnar Tm-Invaran Ssm Ssm s lnar sudd horoughl n 6AB: Ssm s m nvaran: Thr s no lok or m rfrn Th ransfr funon s no a funon of m I dos no mar whn ou appl h npu. Th ransfr funon s gong o h sam -

Lnar Ssms Connuous m lnar ssms hav a lo n ommon wh fn dmnsonal lnar ssms w sudd n 6AB: Lnar: Bass ors à ass funons: Suprposon: Mar Rprsnaon à Ingral rprsnaon: -3 Lnar Ssms on Egnvors à gnfunons Orhonormal ass Egnfunon panson Opraors ang on gnfunon panson -4

LTI Ssms Sn mos prod non-prod sgnals an domposd no a summaon ngraon of snusods va Fourr Srs Transform, h rspons of a LTI ssm o vruall an npu s hararzd h frqun rspons of h ssm: -5 Eampl: Low Pass Flr LPF Inpu sgnal: W know ha: v os s s vo K os f s Phas shf Amp sal v v R s dv C d dv v vs RC d dv vs v d -6 3

Compl Eponnal Iz z θ φ z φ φ z z z z m φ Rz -7 Th Roang Compl Eponnal So h ompl ponnal s nohng u a pon rang ou a un rl on h ompl plan: os sn -8 4

Mag: Turn Dff Eq no Algra Eq Ingraon and dffrnaon ar rval wh ompl numrs: d d ò d An ODE s now rval algra manpulaons n fa, w ll show ha ou don vn nd o drl drv h ODE usng phasors Th k s o osrv ha h urrn/volag rlaon for an lmn an drvd for ompl ponnal aon -9 Unvrs of Calforna, Compl Eponnal s Powrful To fnd sad sa rspons w an h ssm wh a ompl ponnal Mag Rspons LTI Ssm f Phas Rspons A an frqun, h ssm rspons s hararzd a sngl ompl numr : f Ths s no surprsng sn a snusod s a sum of ompl ponnals and aus of lnar! sn os From hs prspv, h ompl ponnal s vn mor fundamnal - 5

Solvng LPF wh Phasors L s h ssm wh a ompl p: dv vs v d v s o s v f us o avod onfuson ral ompl s s - Eas!!! s Magnud and Phas Rspons Th ssm s hararzd h ompl funon s Th magnud and phas rspons mah our prvous alulaon: s an - 6

7-3 Wh dd work? Agan, h ssm s lnar: To fnd h rspons o a snusod, w an fnd h rspons o ωωωω and ωωωω and sum h rsuls: L L L LTI Ssm f LTI Ssm f LTI Ssm -4 on. Sn h npu s ral, h oupu has o ral: Tha mans h sond rm s h onuga of h frs: Thrfor h oupu s: odd funon vn funon f os f f f

8-5 Proof for Lnar Ssms For an arrar lnar ru L,C,R,M, and dpndn sours, dompos no lnar su-opraors, lk mulplaon onsans, m drvavs, or ngrals: For a ompl ponnal npu hs smplfs o: ò ò ò ò ò ò d d d d a L ò ò ò d d d d a L a ø ö ç è æ a -6 Proof on. No ha h oupu s also a ompl p ms a ompl numr: Th amplud of h oupu s h magnud of h ompl numr and h phas of h oupu s h phas of h ompl numr ø ö ç è æ a os ] R[ a ø ö ç è æ

Phasors Wh our nw onfdn n ompl numrs, w go full sam ahad and work drl wh hm w an vn drop h m faor ωωωω sn wll anl ou of h quaons. E ssm wh a phasor: Rspons wll also phasor: ~ f ~ f For hos wh a Lnar Ssm akground, w r gong o work n h frqun doman Ths s h Lapla doman wh s -7 Capaor I- Phasor Rlaon Fnd h Phasor rlaon for urrn and volag n a ap: dvc I ω C v C d v ω I ω C d d [ ω ] d C d ω ω C ω I ω ω C ω I ω C _ -8 9

Induor I- Phasor Rlaon l Fnd h Phasor rlaon for urrn and volag n an nduor: d v L d ω L d d [I ω ] LI d d ω ω LI ω ω ω LI ω ω L I I ω v ω v _ -9 Impd h Currns! Suppos ha h npu s dfnd as h volag of a rmnal par por and h oupu s dfnd as h urrn no h por: v Arrar LTI Cru v f I Th mpdan Z s dfnd as h rao of h phasor volag o phasor urrn slf ransfr funon f v f Z I I I f v -

Adm h Currns! Suppos ha h npu s dfnd as h urrn of a rmnal par por and h oupu s dfnd as h volag no h por: v Arrar LTI Cru v f I Th adman Y s dfnd as h rao of h phasor urrn o phasor volag slf ransfr funon I I f f v Y I f v - olag and Currn Gan Th volag urrn gan s us h volag urrn ransfr funon from on por o anohr por: v Gv Arrar LTI Cru f f I I f f G I I If GG >, h ru has volag urrn gan If GG <, h ru has loss or anuaon v -

Transmpdan/adman Currn/volag gan ar un-lss quans Somms w ar nrsd n h ransfr of volag o urrn or v vrsa v Arrar LTI Cru v J I I K I I f f f f [ W ] [ S] -3 Dr Calulaon of no DEs To drl alula h ransfr funon mpdan, rans-mpdan, w an gnralz h ru analss onp from h ral doman o h phasor doman Wh h onp of mpdan adman, w an now drl analz a ru whou pll wrng down an dffrnal quaons Us KL, KCL, msh analss, loop analss, or nod analss whr nduors and apaors ar rad as ompl rssors -4

LPF Eampl: Agan! Insad of sng up h DE n h m-doman, l s do drl n h frqun doman Tra h apaor as an magnar rssan or mpdan: m doman ral ru frqun doman phasor ru W know h mpdans: Z R R -5 Z C C Bod Plos Smpl h log-log plo of h magnud and phas rspons of a ru mpdan, ransmpdan, gan, Gvs nsgh no h havor of a ru as a funon of frqun Th log pands h sal so ha rakpons n h ransfr funon ar larl dlnad In EECS 4, Bod plos ar usd o ompnsa rus n fdak loops -6 3

Frqun Rspons of Low-Pass Flrs ωc Tω R ωrc ω /ω ωc ω RC Tω ω /ω Tω an ω /ω ω 3 ω [rad/s] f 3 ω π [z] -7 Frqun Rspons of gh-pass Flrs R Tω R ωc ω RC Tω ω /ω Tω an ω /ω ω 3 ω [rad/s] ωrc ω /ω f 3 ω π [z] -8 4

Eampl: gh-pass Flr Usng h volag dvdr rul: L L R R L L R -9 PF Magnud Bod Plo Rall ha log of produ s h sum of log Þ 4 Inras /dad Equals un a rakpon. - -3 5

PF Bod Plo dsson Th sond rm an furhr dssd:./ / / - -4-6 << >> - /d ~ -3-3 - 3 Compos Plo Compos s smpl h sum of ah omponn: gh frqun ~ Gan Low frqun anuaon - -4./ / / -3 6

Approma vrsus Aual Plo Approma urv aura awa from rakpon A rakpon hr s a 3 rror -33 PF Phas Plo Phas an naurall domposd as wll: p an Frs rm s smpl a onsan phas of 9 dgrs Th sond rm s h aran funon Esma aran funon: << 45-34 Aual urv >> 7

Powr Flow Th nsananous powr flow no an lmn s h produ of h volag and urrn: P v For a prod aon, h avrag powr s: Pav ò v d T In rms of snusods w hav P av T I osω ϕ osω ϕ v dτ I osω osϕ snω snϕ osω osϕ v snω snϕ v dτ T I dτ os ω osϕ osϕ v sn ω snϕ snϕ v snω osω I T osϕ osϕ v snϕ snϕ v I osϕ ϕ v -35 Powr Flow wh Phasors P av I os f f v Powr Faor No ha f φφ φφ vv ππ, hn PP aaaa -36 II ππ Imporan: Powr s a non-lnar funon so w an smpl ak h ral par of h produ of h phasors: P ¹ R[ I ] From our prvous alulaon: I P os f f v R[ I * ] R[ I * ] 8

Mor Powr o You! In rms of h ru mpdan w hav: P R[ I * ] Z R[ Z R[ Z * ] Z * ] R[ Z * R[ Z ] Z ] R[ Z] Chk h rsul for a ral mpdan rssor Also, n rms of urrn: * * P R[ I ] R[ I I Z] I R[ Z] -37 Summar Compl ponnals ar gn-funons of LTI ssms Sad-sa rspons of LCR rus ar LTI ssms Phasor analss allows us o ra all LCR rus as smpl rssv rus usng h onp of mpdan adman Frqun rspons allows us o ompll hararz a ssm An npu an domposd no hr a onnuum or dsr sum of frqun omponns Th ransfr funon s usuall plod n h log-log doman Bod plo magnud and phas Loaon of pols/zros s k -38 9