TUTORIAL 8: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

Similar documents
TUTORIAL 6: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION

Density functional theory and beyond: Computational materials science for real materials Los Angeles, July 21 August 1, 2014

Hands-on Workshop: First-principles simulations of molecules and materials: Berlin, July 13 - July 23, 2015

Crystal Relaxation, Elasticity, and Lattice Dynamics

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

Before we start: Important setup of your Computer

Supporting information. The Unusual and the Expected in the Si/C Phase Diagram. Guoying Gao, N. W. Ashcroft and Roald Hoffmann.

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

THERMOSTATS AND THERMAL TRANSPORT IN SOLIDS

Unit IV State of stress in Three Dimensions

Programming Project 2: Harmonic Vibrational Frequencies

Phonon calculations with SCAN

Q SON,' (ESTABLISHED 1879L

Predicting the Structure of Solids by DFT

LOWELL WEEKLY JOURNAL.

A. H. Hall, 33, 35 &37, Lendoi

Lattice dynamics. Javier Junquera. Philippe Ghosez. Andrei Postnikov

LOWELL WEEKLY JOURNAL

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Structural Calculations phase stability, surfaces, interfaces etc

Theoretical Concepts of Spin-Orbit Splitting

MECH 5312 Solid Mechanics II. Dr. Calvin M. Stewart Department of Mechanical Engineering The University of Texas at El Paso

Homework 1/Solutions. Graded Exercises

Theoretical Material Science: Electronic structure theory at the computer Exercise 14: Brillouin zone integration

An introduction to Solid State NMR and its Interactions

Phonon wavefunctions and electron phonon interactions in semiconductors

arxiv: v1 [cond-mat.mtrl-sci] 1 Mar 2011

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

Advanced Spectroscopy. Dr. P. Hunt Rm 167 (Chemistry) web-site:

Two Posts to Fill On School Board

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Tutorial on DFPT and TD-DFPT: calculations of phonons and absorption spectra

Introduction to Condensed Matter Physics

Multiple Integrals and Vector Calculus: Synopsis

Quasi-Harmonic Theory of Thermal Expansion

Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation

Geometry Optimisation

' Liberty and Umou Ono and Inseparablo "

Module #3. Transformation of stresses in 3-D READING LIST. DIETER: Ch. 2, pp Ch. 3 in Roesler Ch. 2 in McClintock and Argon Ch.

Chapter 5 Phonons II Thermal Properties

Basic Equations of Elasticity

PALACE PIER, ST. LEONARDS. M A N A G E R - B O W A R D V A N B I E N E.

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Properties of the stress tensor

MANY BILLS OF CONCERN TO PUBLIC

From Electrons to Materials Properties

Finite-temperature equation of state. T ln 2sinh h" '-

Lecture 8. Stress Strain in Multi-dimension

Rigid body simulation. Once we consider an object with spatial extent, particle system simulation is no longer sufficient

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

exciting in a nutshell

OWELL WEEKLY JOURNAL

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

1 Hooke s law, stiffness, and compliance

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

Algebraic Expressions

+ V = 0, j = 1,..., 3N (7.1) i =1, 3 m = 1, N, X mi, V X mi. i = 0 in the equilibrium. X mi X nj

The quasi-harmonic approximation (QHA)

(2) A two-dimensional solid has an electron energy band of the form, . [1]

Closed-Form Solution Of Absolute Orientation Using Unit Quaternions

Phonon Dispersion, Interatomic Force Constants Thermodynamic Quantities

Abinit electron phonon interaction calculations for geniuses

Phonons In The Elk Code

University of Chinese Academy of Sciences, Beijing , People s Republic of China,

Wave and Elasticity Equations

MP464: Solid State Physics Problem Sheet

6.730 Physics for Solid State Applications

If the symmetry axes of a uniform symmetric body coincide with the coordinate axes, the products of inertia (Ixy etc.

Electronic Structure of Crystalline Solids

Stress, Strain, Mohr s Circle

Homogenization Methods for Full Core Solution of the Pn Transport Equations with 3-D Cross Sections. Andrew Hall October 16, 2015

Vibrational states of molecules. Diatomic molecules Polyatomic molecules

Chapter 2 Governing Equations

Ab initio phonon calculations in mixed systems

Topological insulator part I: Phenomena

SIMULATION AND INTERPRETATION OF BOREHOLE GEOPHYSICAL MEASUREMENTS USING hp FINTE ELEMENTS

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Project Report: Band Structure of GaAs using k.p-theory

Applications of Eigenvalues & Eigenvectors

7 Lattice Vibrations. 7.1 Introduction

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Winmostar tutorial LAMMPS Melting point V X-Ability Co,. Ltd. 2017/8/17

equation of state and bulk modulus of AlP, AlAs and AlSb semiconductor compounds

Rotations and vibrations of polyatomic molecules

Rotational Motion. Chapter 4. P. J. Grandinetti. Sep. 1, Chem P. J. Grandinetti (Chem. 4300) Rotational Motion Sep.

ALMA: All-scale predictive design of heat management material structures

Microscopic-Macroscopic connection. Silvana Botti

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 14 May 2003

Representing High-Dimensional Potential-Energy Surfaces by Artificial Neural Networks

Electromagnetism II Lecture 7

Vibrational Analysis in Gaussian

Potentials, periodicity

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

MATH 19520/51 Class 5

Transcription:

TUTORIAL 8: PHONONS, LATTICE EXPANSION, AND BAND-GAP RENORMALIZATION 1

INVESTIGATED SYSTEM: Silicon, diamond structure Electronic and 0K properties see W. Huhn, Tutorial 2, Wednesday August 2 2

THE HARMONIC APPROXIMATION E ({R 0 + R}) E ({R 0 })+ X i @E @R i R 0 R i + 1 2 X i,j @ 2 E @R i @R j R0 R i R j 3

THE HARMONIC APPROXIMATION E ({R 0 + R}) E ({R 0 })+ X i @E @R i R 0 R i + 1 2 X i,j @ 2 E @R i @R j R0 R i R j Static Equilibrium Energy from DFT Hessian Φij 4

THE HARMONIC APPROXIMATION E ({R 0 + R}) E ({R 0 })+ X i @E @R i R 0 R i + 1 2 X i,j @ 2 E @R i @R j R0 R i R j Static Equilibrium Energy from DFT Hessian Φij Determine Hessian aka the Harmonic Force Constants Φij: from Density-Functional Perturbation Theory S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) & S. Baroni, et al., Rev. Mod. Phys. 73, 515 (2001). from Finite Differences K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) & K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). 5

THE HARMONIC APPROXIMATION E ({R 0 + R}) E ({R 0 })+ X i @E @R i R 0 R i + 1 2 X i,j @ 2 E @R i @R j R0 R i R j Static Equilibrium Energy from DFT Hessian Φij Determine Hessian aka the Harmonic Force Constants Φij: from Density-Functional Perturbation Theory phonopy-fhi-aims S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987) & S. A. Baroni, Togo, F. et Oba, al., Rev. and Mod. I. Tanaka, Phys. Phys. 73, 515 Rev. (2001). B 78, 134106 (2008). from Finite Differences K. Kunc, and R. M. Martin, Phys. Rev. Lett. 48, 406 (1982) & K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). 6

THE FINITE DIFFERENCE APPROACH K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008). Finite differences using normalized displacements d: ij = @2 E @R i @R j R 0 = @ F j F j(r 0 i + " d i) @R i R 0 " 7

THE FINITE DIFFERENCE APPROACH K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008). Finite differences using normalized displacements d: ij = @2 E @R i @R j R 0 = @ F j F j(r 0 i + " d i) @R i R 0 " Example: Diamond Si (2 atoms in the basis): 0 B @ xx yx zx xx yx zx xy yy zy xy yy zy xz yz zz xz yz zz xx yx zx xx yx zx xy yy zy xy yy zy xz yz zz xz yz zz 1 C A Hessian has 36 entries: 6 displacements d required 8

THE FINITE DIFFERENCE APPROACH K. Parlinski, Z. Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997). A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008). Finite differences using normalized displacements d: ij = @2 E @R i @R j R 0 = @ F j F j(r 0 i + " d i) @R i R 0 " 0 B @ xx yx zx xx yx zx xy yy zy xy yy zy xz yz zz xz yz zz Example: Diamond Si (2 atoms in the basis): xx yx zx xx yx zx xy yy zy xy yy zy Space Group Analysis xz yz zz xz yz zz 1 C A 0 B @ xx xy xx 0 xy 0 xx xy xx 0 xy 0 xz yz xx xz yz xx xx yz xz xx yz xz xy 0 xx 0 xy xx xy 0 xx 0 xy xx 1 C A Hessian has 5 unique, non-zero entries: Only 1 displacement d required 9

VIBRATIONS IN A CRYSTAL 101 e.g. N. W Ashcroft and N. D. Mermin, Solid State Physics (1976) also see Oliver Hofmann, Tuesday August 1 Dynamical matrix: D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j Equation of Motion becomes an Eigenvalue Problem: D(q) [ (q)] =! 2 (q) [ (q)] Analytical Solution in Real Space: Superposition of Harmonic Oscillations R j (t) = R 0 j + Re X s A s p Mi e i (q (R 0 j R 0 j 0 )! s (q)t) [ s (q)] j 0!

(a) Edit your file control.in so that it contains the following lines phonon displacement 0.01 (b) Run phonopy-fhi-aims by typing phonopy-fhi-aims (c) Change into the directory phonopy-fhi-aims-displacement-01 and run FHI-aims: cd phonopy-fhi-aims-displacement-01 mpirun -np 4 aims.x > phonopy-fhi-aims-displacement-01.out (d) Change into parent directory and run phonopy-fhi-aims again cd.. phonopy-fhi-aims

CONVERGING THE SUPERCELL Fourier Transform can be truncated since Φij = 0 D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j for large Rjj 0 = Rj 0 - Rj 0 phonon displacement 0.01 phonon supercell 1 1 1 k_grid 4 4 4 phonon displacement 0.01 phonon supercell 2 2 2 k_grid 2 2 2

CONVERGING THE SUPERCELL Fourier Transform can be truncated since Φij = 0 D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j for large Rjj 0 = Rj 0 - Rj 0 phonon displacement 0.01 phonon supercell 1 1 1 k_grid 4 4 4 phonon displacement 0.01 phonon supercell 2 2 2 k_grid 2 2 2 To achieve convergence, it is essential to have a consistent description of the electronic structure for all supercell sizes: #atoms #k-points constant 13

CONVERGING THE SUPERCELL Fourier Transform can be truncated since Φij = 0 D i 0 j 0 (q) = X j e i (q (R 0 j R 0 j 0 )) p Mi 0M j 0 i 0 j for large Rjj 0 = Rj 0 - Rj 0 Oblique Cell: Not all Cartesian directions are treated consistently! Cubic ( spherical ) Cell: Consistent assessment of all cartesian directions! 14

VIBRATIONAL BAND STRUCTURE # control.in : Plot vibrational band structure phonon band 0 0 0 0.00 0.25 0.25 100 Gamma Delta phonon band 0.00 0.25 0.25 0 0.5 0.5 100 Delta X phonon band 0 0.5 0.5 0.25 0.50 0.75 100 X W phonon band 0.25 0.50 0.75 0.375 0.375 0.75 100 W K phonon band 0.375 0.375 0.75 0 0 0 100 K Gamma phonon band 0 0 0 0.25 0.25 0.25 100 Gamma Lambda phonon band 0.25 0.25 0.25 0.5 0.5 0.5 100 Lambda L 600 500 400 ω (cm -1 ) 300 200 100 0 Γ X W K Γ Λ L

VIBRATIONAL DENSITY OF STATES g(!) = X s Z dq (2 ) 3 (!!(q)) = X s Z!(q)=! ds 1 (2 ) 3 r!(q) # control.in : Plot vibrational density of states phonon dos 0 800 800 3 45 0.06 g(ω) (a.u.) 0.04 0.02 0 0 200 400 600 ω (cm -1 )

VIBRATIONAL DENSITY OF STATES g(!) = X s Z dq (2 ) 3 (!!(q)) = X s 600 Z!(q)=! ds 1 (2 ) 3 r!(q) 500 400 0.06 ω (cm -1 ) 300 200 100 g(ω) (a.u.) 0.04 0.02 0 Γ X W K Γ Λ L 0 0 200 400 600 ω (cm -1 )

THE HARMONIC FREE ENERGY F ha (T ) = E({R 0 }) Z Static Equilibrium Energy + + Z d d g( ) ~ 2 Zero-point vibration g( ) k B T ln 1 e ~ k B T Thermally induced vibrations 18

FREE ENERGY AND HEAT CAPACITY F ha (ev) 0.2 0-0.2-0.4 c V (k B ) 6 5 4 3 @S @ 2 F (T ) C V = T = T 2 @T @T V 2 V 1 0 0 200 400 600 800 1000 T (K) 19

THE QUASI-HARMONIC APPROXIMATION 20

THE HARMONIC APPROXIMATION H = X i T i + 1 2 X i,j ij R i R j ) @H @V =0 Lattice expansion vanishes in the harmonic approximation. THE QUASI-HARMONIC APPROACH H = X i T i + 1 2 X i,j ij(v ) R i R j ) @H @V 6=0 Assess lattice expansion by explicitly accounting for the volume dependence of the Hessian.

THE QUASI-HARMONIC APPROACH (free) energy Lattice constant a0 can be determined from Birch-Murnaghan fit of E(a0) cf. William Huhn, Practical Session 2 EDFT lattice constant a0

THE QUASI-HARMONIC APPROACH (free) energy +Fha(0K) Lattice constant a0 can be determined from Birch-Murnaghan fit of E(a0) cf. William Huhn, Practical Session 2 Add vibrational free energy for each individual value of a0 EDFT lattice constant a0 23

THE QUASI-HARMONIC APPROACH (free) energy a0(t) EDFT lattice constant a0 +Fha(T2) +Fha(T1) +Fha(0K) Lattice constant a0 can be determined from Birch-Murnaghan fit of E(a0) cf. William Huhn, Practical Session 2 Add vibrational free energy for each individual value of a0 Repeat for each temperature 0K < T1 < T2 Birch-Murnaghan fits for each individual temperature allow to determine temperature dependence of lattice constant a0(t). 24

EXERCISE 3 LATTICE EXPANSION @a 5e-06 (T )= 1 a @T p 4e-06 3e-06 α (1/K) 2e-06 1e-06 0-1e-06 0 200 400 600 800 1000 Temperature (K) 25

EXERCISE 3 LATTICE EXPANSION @a 5e-06 (T )= 1 a @T p 4e-06 3e-06 α (1/K) 2e-06 1e-06 < 0? 0-1e-06 0 200 400 600 800 1000 Temperature (K) 26

ELECTRON-PHONON COUPLING 27

BAND GAP RENORMALIZATION Electronic band gaps often exhibit a distinct temperature dependence Linear extrapolation yields the bare gap at 0K, i.e., the gap for immobile nuclei (classical limit) Linear Extrapolation Actual band gap at 0K differs from the bare gap: Band gap renormalization 28 M. Cardona, Solid State Comm. 133, 3 (2005).

ELECTRON-PHONON COUPLING conduction band "(k) bare band gap valence band 29

ELECTRON-PHONON COUPLING conduction band conduction band "(k) bare band gap valence band "(k) band gap valence band 30

BAND GAP TEMPERATURE DEPENDENCE What is the physical mechanism? Exercise 4: Lattice Expansion? Exercise 5: Atomic Motion? Use results from exercise 3 Molecular Dynamics 31

HARMONIC MOLECULAR DYNAMICS M I RI (t) = r Ri E DFT M I RI (t) = X j ij R j Harmonic Approximation # Molecular Dynamics MD_MB_init 300.000 MD_time_step 0.001 MD_schedule MD_segment 5.0 NVT_parrinello 300.000 0.050 harmonic_potential_only fc_constants.dat MD_segment 20.0 NVT_parrinello 300.000 0.050 harmonic_potential_only fc_constants.dat # Equilibration # Sample phase space 32

WARNING: In the following exercises, the computational settings, in particular the reciprocal space grid (tag k_grid), the basis set, and supercells, have been chosen to allow a rapid computation of the exercises in the limited time and within the CPU resources available during the tutorial session. In a real production calculation, the reciprocal space grid, the basis set, and the supercells would all have to be converged with much more care, but the qualitative trends hold already with the present settings Happy Computing! Christian Carbogno Mohsen Yarmohammadi 33 Maja Lenz Florian Knoop

LATTICE EXPANSION S. Biernacki and M. Scheffler, Phys. Rev. Lett. 63, 290 (1989). Z Free energy definition: F ha (T! 0) / d! g(!) ~! 2 600 500 equilibrium V Frequencies lowered at frequenncy (cm -1 ) 400 300 200 expanded V larger volumes! 100 0 34

LATTICE EXPANSION S. Biernacki and M. Scheffler, Phys. Rev. Lett. 63, 290 (1989). Z Free energy definition: F ha (T! 0) / d! g(!) ~! 2 600 500 equilibrium V Frequencies lowered at frequenncy (cm -1 ) 400 300 200 100 expanded V larger volumes! Acoustic frequencies increased at 0 larger volumes! 35