Plate Theories for Classical and Laminated plates Weak Formulation and Element Calculations

Similar documents
One Dimensional Axial Deformations

C PLANE ELASTICITY PROBLEM FORMULATIONS

Instituto Tecnológico de Aeronáutica FINITE ELEMENTS I. Class notes AE-245

PLATE BENDING ELEMENTS

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Finite Element Modelling of truss/cable structures

Application to Plane (rigid) frame structure

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

Elshaboury SM et al.; Sch. J. Phys. Math. Stat., 2015; Vol-2; Issue-2B (Mar-May); pp

In this section is given an overview of the common elasticity models.

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

CIVL 8/7117 Chapter 10 - Isoparametric Formulation 42/56

STATIC ANALYSIS OF TWO-LAYERED PIEZOELECTRIC BEAMS WITH IMPERFECT SHEAR CONNECTION

Module 3: Element Properties Lecture 1: Natural Coordinates

C PLANE ELASTICITY PROBLEM FORMULATIONS

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

MEMBRANE ELEMENT WITH NORMAL ROTATIONS

Frame element resists external loads or disturbances by developing internal axial forces, shear forces, and bending moments.

(5.1.1) v Here, u and v are the displacements parallel to x and y directions respectively.

EVALUATION OF THE VISCO-ELASTIC PROPERTIES IN ASPHALT RUBBER AND CONVENTIONAL MIXES

Physics 5153 Classical Mechanics. D Alembert s Principle and The Lagrangian-1

Section 8.3 Polar Form of Complex Numbers

Indeterminate pin-jointed frames (trusses)

THE SMOOTH INDENTATION OF A CYLINDRICAL INDENTOR AND ANGLE-PLY LAMINATES

Week 9 Chapter 10 Section 1-5

Grid Generation around a Cylinder by Complex Potential Functions

coordinates. Then, the position vectors are described by

So far: simple (planar) geometries

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Fastener Modeling for Joining Composite Parts

PHYS 705: Classical Mechanics. Calculus of Variations II

OFF-AXIS MECHANICAL PROPERTIES OF FRP COMPOSITES

CHAPTER 6. LAGRANGE S EQUATIONS (Analytical Mechanics)

Rigid body simulation

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

Inductance Calculation for Conductors of Arbitrary Shape

Chapter 6 Elastic -Plastic Fracture Mechanics

CHAPTER 4. Vector Spaces

Lecture 12: Discrete Laplacian

Interconnect Modeling

General displacement arch-cantilever element method for stress analysis of arch dam

PART 8. Partial Differential Equations PDEs

DUE: WEDS FEB 21ST 2018

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Buckling analysis of single-layered FG nanoplates on elastic substrate with uneven porosities and various boundary conditions

Modal Identification of the Elastic Properties in Composite Sandwich Structures

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

MODELLING OF ELASTO-STATICS OF POWER LINES BY NEW COMPOSITE BEAM FINITE ELEMENT Bratislava

A Quantum Gauss-Bonnet Theorem

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Physics 181. Particle Systems

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

12. The Hamilton-Jacobi Equation Michael Fowler

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

Effects of Boundary Conditions on Cross-Ply Laminated Composite Beams

5.76 Lecture #21 2/28/94 Page 1. Lecture #21: Rotation of Polyatomic Molecules I

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

PHYS 705: Classical Mechanics. Canonical Transformation II

NUMERICAL RESULTS QUALITY IN DEPENDENCE ON ABAQUS PLANE STRESS ELEMENTS TYPE IN BIG DISPLACEMENTS COMPRESSION TEST

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

The Feynman path integral

Finite Element Solution Algorithm for Nonlinear Elasticity Problems by Domain Decomposition Method

APPENDIX A Some Linear Algebra

Finite Difference Method

Bézier curves. Michael S. Floater. September 10, These notes provide an introduction to Bézier curves. i=0

Lecture Notes Introduction to Cluster Algebra

Army Ants Tunneling for Classical Simulations

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

Geometrically exact multi-layer beams with a rigid interconnection

Increase Decrease Remain the Same (Circle one) (2 pts)

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Introduction to Density Functional Theory. Jeremie Zaffran 2 nd year-msc. (Nanochemistry)

Calculus of Variations Basics

Poisson brackets and canonical transformations

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

THEOREMS OF QUANTUM MECHANICS

1 Matrix representations of canonical matrices

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Linear Regression Analysis: Terminology and Notation

PHYS 705: Classical Mechanics. Newtonian Mechanics

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82

Lecture 5.8 Flux Vector Splitting

Lecture Note 3. Eshelby s Inclusion II

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS

MEEM 3700 Mechanical Vibrations

ASME2015 IDETC/CIE, 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC) MSNDC-10 Vehicle Dynamics

PHYS 705: Classical Mechanics. Hamilton-Jacobi Equation

Optimum design of laminated composite under axial compressive load

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Pre-Calculus Summer Assignment

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Vibrating Beam

Numerical analysis of buried pipes subjected to lateral soil movements

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

Transcription:

Plate heores for Classcal and Lamnated plates Weak Formulaton and Element Calculatons PM Mohte Department of Aerospace Engneerng Indan Insttute of echnolog Kanpur EQIP School on Computatonal Methods n Engneerng Applcaton Knowledge Incubaton for EQIP

Plate lke Elements n Structural Applcatons

Classcal Plate heor

Classcal Plate heor: Plate Geometr and notatons, n-plane coordnates coordnate plane md-plane or md-surface h q(,) z coordnate n thckness drecton h thckness of the plate u, v and w deformatons/dsplacements along, and z aes, respectvel z - doman of the plate, - boundng surface

Classcal Plate heor: Basc Features: Deformaton feld s based on the of Krchhoff-Love assumptons Applcable to thn plates Plane stress condton 1. Normal to the md-plane (.e., transverse normals) before deformaton reman straght and normal after deformaton. ransverse normals to the md-plane are netensble 3. Materal s homogeneous and sotropc

Classcal Plate heor: Knematcs of Deformaton Geometr of Deformaton Approach Undeformed Geometr: a b Or z Deformaton Stretchng acton due to load the edges of plate and parallel to the md-surface Bendng acton due to loads the top and bottom surface

Classcal Plate heor: Knematcs of Deformaton Deformaton due to Stretchng: An normal to the mdplane s translated horzontall as a rgd lne n the plane Undeformed Geometr a X Deformed Geometr z b u (,) a X z Vew n drecton b

Classcal Plate heor: Knematcs of Deformaton Deformaton due to Bendng: An normal to the mdplane s translated vertcall as rgd lne mantanng, coordnates then rotates as a rgd element Undeformed Geometr a b Deformed Geometr z a w (,) z Vew n drecton b

Classcal Plate heor: Knematcs of Deformaton Deformaton due to Stretchng and Bendng: Undeformed Geometr a z b u (,) w (,) Deformed Geometr a z Vew n drecton b

Classcal Plate heor: Knematcs of Deformaton Deformaton of a Generc Pont on the Normal: z α w tan For small deformatons, w tan w z a a p p In-plane deformaton due to rgd rotaton of the normal z b α w b z w Vew n drecton

Classcal Plate heor: Knematcs of Deformaton Deformaton of a Generc Pont on the Normal due to both Stretchng and Bendng:,,, u z u z w Smlarl, the deformaton vewed n drecton can be gven as,,, v z v z w Stretchng part Bendng part And the deformaton n the transverse drecton,,, w z w Bendng part

Classcal Plate heor: Knematcs of Deformaton Alternate Approach: Small deformatons, Strans are nfntesmal he frst assumpton leads to the condton that transverse shear strans are zero. z and z Inetensblt of a transverse normal mples the transverse normal stran s zero. hat s, zz Integratng ths wth respect to z, w z, z w w,, - functon of and onl

Classcal Plate heor: Knematcs of Deformaton Deformaton feld: From the frst assumpton z u w z u z w Integratng wth respect to z w,,z z u, u Smlarl, z v w z v z w

Classcal Plate heor: Deformaton feld: Integratng wth respect to z w,,z z v, v Snce,, v, and w, are ndependent of z, u, ther varaton along thckness s zero or these are constants along z. herefore, u,, v, and w, are taken as md-plane or md-surface dsplacements.

Classcal Plate heor: Stran Feld All other stran components are zero. hs also mples that the transverse shear stresses are zero w z v u v u w z v v w z u u 1 1 z z

Classcal Plate heor: Consttutve Relatons Stran Feld: where, z u v u v Md-plane strans w w w Md-plane Curvatures

Classcal Plate heor: Consttutve Relatons Isotropc Materals: Strans n terms of stresses ν Posson s rato, E- Young s Modulus Stresses n terms of strans 1 1 1 E 1 1 E 1 1 1

Classcal Plate heor: Stress Resultants z Defne shear force resultants as z z z Q h h z dz

Classcal Plate heor: Stress Resultants z z z Q h h z dz

Classcal Plate heor: Stress Resultants Resultant Forces: h h h N dz, N dz, N dz h h h Resultant Moments: h h h M z dz, M z dz, M z dz h h h

Classcal Plate heor: Stress Resultants Resultant Forces: N 1 N A 1 N 1 where, A Eh 1 Resultant Moments: M 1 M D 1 M 1 where, D Eh Bendng Rgdt 3 1 1

Classcal Plate heor: Equlbrum Equatons Equaton n -drecton wthout an bod force: z z Multpl wth z and ntegrate over plate thckness h h h z dz z dz z dz z z h h h M M z z dz z h h

Classcal Plate heor: Equlbrum Equatons Smplfng, h h h z z dz z z h z z dz Q z h h No shear stress on the top and bottom of the plate. M M Q a Smlarl, equlbrum equaton n drecton s M M Q b

Classcal Plate heor: Equlbrum Equatons Integratng the equlbrum equaton n z drecton over the plate thckness In terms of resultants h h h z z h h h ransverse load s appled on top face onl. zz dz dz dz z Q Q zz z z h h z zz z zz z h and z h q, z zz z

Classcal Plate heor: Equlbrum Equatons hs gves Q Q q, c Combnng Eqs. (a), (b) and (c) nto a sngle equaton and elmnatng Q and Q M M M q, Fnall, epressng the resultant moments n terms of dsplacement w 4 q w Nonhomogeneous Bharmonc Equaton frst developed b Sophe German n 1815. D

Fnte Element Formulaton of Classcal Plate heor

Classcal Plate heor: Fnte Element Formulaton Let the doman be dvded nto (3 noded) trangular or (4 noded) quadrlateral elements e k e l j j k Each node has three nodal dsplacements or 3 degrees of freedom (DOF) or prmar varables w w θ w θ e w a w z

Classcal Plate heor: Fnte Element Formulaton Each node has three nodal forces (secondar varables) q z (q θ ) (q θ ) z e q q q q z

Classcal Plate heor: Fnte Element Formulaton otal Potental Energ of an element π: D w w w w 1 d d a q he frst varaton of π w w w 1 D w w w w d d a q 1 w w

Classcal Plate heor: Fnte Element Formulaton he frst varaton of otal Potental Energ of an element usng resultant moments and curvatures w w w M M M d d a q Moments and Curvatures n matr forms usng assumed dsplacement over an element M d d a q

Classcal Plate heor: Fnte Element Formulaton Re-arrangement of Stran Feld: s a lnear operator For eample, for the element shown the DOFS are a L w L w w w L j k e w 3 9 8 3 7 6 5 4 3 1, c c c c c c c c c w

Classcal Plate heor: Fnte Element Formulaton Nodal dsplacement for th node: Or can be found as ([A] s nvertble) c w 3 1 3 1 1 3 3 e e c A a e e a A c 1 e c

Classcal Plate heor: Fnte Element Formulaton Md-plane curvatures for e th element: Or where, 9 8 7 6 5 4 3 1 4 6 6 c c c c c c c c c w w w e e e c H 4 6 6 H

Classcal Plate heor: Fnte Element Formulaton Md-plane curvatures for e th element n terms of nodal varables: e 1 H A a e Let B H A 1 Now the resultant moments are epressed as M 1 M D 1 M 1 or where, M D* D* 1 D 1 1

Classcal Plate heor: Fnte Element Formulaton he frst varaton of otal Potental Energ of an element usng resultant moments and curvatures a B D Ba d d a q Usng the relatons developed for resultant moments and md-plane curvatures a B D* B a dd a q or a B D * Bdd a q

Classcal Plate heor: Fnte Element Formulaton hs can be further wrtten as where, e a K a q e k B D* Bdd as a s arbtrar. Fnall, for an element e we wrte K e a e q e

Classcal Plate heor: Fnte Element Formulaton Element load vector calculaton: From Prncpal of vrtual work Now, re-wrte the dsplacement over the element,,,,, a q p w dd P w r w ds M w ds n 3 9 8 3 7 6 5 4 3 1, c c c c c c c c c w j k P P 1 M r(,) p(,)

Classcal Plate heor: Fnte Element Formulaton Dsplacement n an element or 3 3, 1,,,,,,,, w c 3 3 1 e, 1,,,,,,,, * 1 w A a C A a e e Let herefore, and N C * A 1 e w N a a N e w a N

Classcal Plate heor: Fnte Element Formulaton Puttng these n vrtual work of eternal forces a q a p, N dd a P N, N, a r, N, ds a M ds n Snce a s arbtrar e q p, N dd P N, N, r, N, ds M ds n

Classcal Lamnated Plate heor

Classcal Lamnated Plate heor: Nomenclature H otal lamnate thckness 13 Prncpal materal drectons z Global materal drectons θ k Pl orentaton of k th pl z k bottom z-coordnate of k th pl Abbrevated as CL or Classcal Lamnated Plate heor - CLP

Classcal Lamnated Plate heor: Assumptons hs s a drect etenson of classcal plate theor to lamnates Same assumptons as n classcal plate theor wth Laers are perfectl bonded. here s no slp between adjacent laers. he dsplacements are contnuous through the thckness. Each laer s consdered to be homogeneous and can be sotropc, orthotropc or transversel sotropc wth known propertes.

Classcal Lamnated Plate heor: Lamna Consttutve Relatons Orthotropc Materals, Prncpal Materal Drectons Strans n k th lamna n terms of stress Stresses n k th lamna n terms of strans 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 Q G E E E E 1 1 1 E E and 1 11 1 1 1 1 1 1 11 1 1 1 G E E E E

Classcal Lamnated Plate heor: Lamna Consttutve Relatons Global Drectons ransformaton of stresses ransformaton of strans n m mn mn mn m n mn n m 1 11 and cos m where, sn n n m mn mn mn m n mn n m 1 11

Classcal Lamnated Plate heor: Lamna Consttutve Relatons Stresses n Global Drectons 11 1 11 Q Q 1 1 Q Reduced transformed stffness matr: 1 Q Q Q Q Q 11 1 16 Q Q Q 1 6 Q Q Q 16 6 66 Q

Classcal Lamnated Plate heor: Lamna Consttutve Relatons Strans n Global Drectons S Reduced transformed stffness matr: 1 1 1 S Q Q S S S 11 1 16 S S S 1 6 S S S 16 6 66 Q, Q, S are smmetrc matrces

Classcal Lamnated Plate heor: Lamna Consttutve Relatons Stresses n k th lamna k Q k k Usng defnton of strans k k k k Q Q z

Classcal Lamnated Plate heor: Lamnate Consttutve Relatons Resultant Forces: H H H N dz, N dz, N dz Usng defnton of stresses H H H where N N N N H k k k k N Q dz Q Q z dz H H H Stresses var pecewse lnearl n each laer.

Classcal Lamnated Plate heor: Lamnate Consttutve Relatons k are constant n each laer Q, and Integraton over lamnate thckness s evaluated as sum of ntegratons over laer thcknesses Nla k k k k N Q dz Q Q z dz z k Nla k1 z k1 k1 k1 z z k where, Nla N A B k 1 A Q z k zk1, B Q zk zk1 k1 k1 Nla k

Classcal Lamnated Plate heor: Lamnate Consttutve Relatons Resultant Moments: H H H M zdz, M zdz, M zdz H H H where M M M M Usng defnton of stresses H H k k k k M Q zdz Q Q z zdz H H Stresses var pecewse lnearl n each laer.

Classcal Lamnated Plate heor: Lamnate Consttutve Relatons Integraton over lamnate thckness s evaluated as sum of ntegratons over laer thcknesses Nla k k k k M Q zdz Q Q z zdz z k Nla k1 z k1 k1 k1 M B D z z k where, Nla Nla 1 k 1 3 3 3 B Q z k zk1, D Q zk zk1 k1 k1 k A, B and D are smmetrc.

Classcal Lamnated Plate heor: Lamnate Consttutve Relatons Stress Resultants Moment Resultants

Classcal Lamnated Plate heor: Lamnate Consttutve Relatons Lamnate Consttutve Relatons: B D N A B M Equatons of moton: N N M N N M M q,

Classcal Lamnated Plate heor: Weak Formulaton From the frst equaton of moton: e u u v u v w w w A11 A1 A16 B11 B 1 B 16 dd u u v u v w w w A16 A6 A66 B16 B 6 B 66 e N u ds n n

Classcal Lamnated Plate heor: Weak Formulaton From the second equaton of moton: e e v u v u v w w w A1 A A6 B1 B B 6 v u v u v w w w N A16 A6 A66 B16 B 6 B 66 s u ds s dd

Classcal Lamnated Plate heor: Weak Formulaton From the thrd equaton of moton: e w u v u v w w w A11 A1 A16 B11 B 1 B 16 w w u v u v w w w A16 A6 A66 B16 B 6 B 66 dd w u v u v w w w A1 A A6 B1 B B 6 w w u v u v w w w A16 A6 A66 B16 B 6 B 66

Classcal Lamnated Plate heor: Weak Formulaton From the thrd equaton of moton: w u v u v w w w B11 B1 B16 D11 D 1 D 16 w u v u v w w w B1 B B6 D1 D D 6 dd e w u v u v w w w B16 6 66 16 6 B B D D D 66 wq w Vn w M n ds n e

Classcal Lamnated Plate heor: Weak Formulaton where, N N n N n, N N n N n n s M ns Vn Qn P s M M n M n, M M n M n n s w w w w P N N n N N n (n, n ) denote the drecton cosnes of the unt normal on the element boundar Γ e

Classcal Plate heor: Fnte Element Formulaton Let the doman be dvded nto (3 noded) trangular or (4 noded) quadrlateral elements e k e l j j k Each node has fve nodal dsplacements or 5 degrees of freedom (DOF) or prmar varables v u θ w z θ a e u v w w w

Classcal Plate heor: Fnte Element Formulaton Each node has fve nodal forces (secondar varables) q q q z (q θ ) (q θ ) z Nodal force vector: e q q q q q q z

Classcal Lamnated Plate heor: Fnte Element Formulaton Appromaton of soluton n an element: u Node, 1, u N Smlarl, for the other varables v, w, w and w hat s, appromaton of soluton vector: Node Number of nodes n an element e N (,) Interpolaton functon assocated wth node a a value of correspondng to node Node a N, a 1

Classcal Lamnated Plate heor: Weak Formulaton otal Potental Energ Nelem Number of elements Nelem e1 d e e e d U W e U e - Stran energ of an element W e - work done b eternal forces n an element

Classcal Lamnated Plate heor: Fnte Element Formulaton Md-plane strans: or where, E stands for etenson. E L a w v u

Classcal Lamnated Plate heor: Fnte Element Formulaton Md-plane curvatures: or where, B stands for bendng. w v u a L B

Classcal Lamnated Plate heor: Fnte Element Formulaton Generalzed Md-plane strans: where, and BE LE N Node B E B E 1 L a L N a Node 1 B E E E Node 1 B E d a and d a a a a 1 3 Node

Classcal Lamnated Plate heor: Fnte Element Formulaton Generalzed Md-plane curvatures: where, and BB LB N Node B B B B 1 L a L N a Node B 1 B B B Node 1 B B d a and d a a a a 1 3 Node

Classcal Lamnated Plate heor: Fnte Element Formulaton Stran Energ of an element: Stran energ due to etenson Stran energ due to bendng Usng the notatons, B E e U U U e A e da M N U 1 e A B B B E E B E E e da d B D B d d B B B d d B B B d d B A B d U 1

Classcal Lamnated Plate heor: Fnte Element Formulaton Stran Energ of an element n a concse form e 1 e U d K d where, K e s the element stffness matr 1 K B A B B B B B B B B D B da e E E B E E B B B e A

Classcal Lamnated Plate heor: Fnte Element Formulaton Eternal work done: e N W d N q, da d N r, ds d M ds n A e e e Also can be wrtten concsel as e W d q e where, q e s the element load vector N q N q da N r ds M ds n e,, A e e e

Classcal Lamnated Plate heor: Fnte Element Formulaton Numercal Integraton of Stffness Matr (for quadrlateral element): 11 e * j j K B D B J dd 11 NIN NIN e * j J j l m l1 m1 K B D B W W NIN - s the number of Gauss quadrature ponts nξ and η drectons W weght ponts n drecton J - Determnant of the Jacoban matr

Classcal Lamnated Plate heor: Fnte Element Formulaton where, B BE B B and D * A B B D

Classcal Lamnated Plate heor: Fnte Element Formulaton Numercal ntegraton of Load vector: wo parts: Area ntegral and lne ntegral N q N q da N r ds M ds n e,, where, area ntegral part of the load vector: And lne ntegral part of the load vector: A e e e e q e q e q 1 e q N q, 1 e A e q N r, e ds e da N n M ds

Classcal Lamnated Plate heor: Fnte Element Formulaton Numercal ntegraton of Load vector: 11 e q N, q J d d 1, 1 1 NIN NIN e q N q,,, J l m l m l, 1 l1 m1 m W l W m All other terms have same meanng as n stffness matr numercal ntegraton

Classcal Lamnated Plate heor: Fnte Element Formulaton Numercal ntegraton of Load vector: Lne ntegral 1D Numercal ntegraton q 1 e N 1D N r M J d n 1 NIN1D N l l l M l l J l1 n e q N r NIN1D - s the number of Gauss quadrature ponts nξ drecton 1D 1D W D W 1 l 1D J weght ponts n drecton - Jacoban for one dmensonal ntegratons (=length/)

Hgher Order Shear Deformable Plate heores

Hgher Order Plate heor: Dsplacement feld: 3 1 3 4 u,,z u, zu, z u, z u, 3 1 3 4 v,,z v, zv, z v, z v, 3 1 3 4 w,,z w, zw, z w, z w, Hgher order representaton of strans n the thckness drecton ransverse strans are non-zero. Stran components: zz z z

Frst Order Shear Deformaton heor: Dsplacement feld: 1 1 u,,z u, zu, v,,z v, zv, w,,z w, 1 Hgher order representaton of strans n the thckness drecton ransverse shear strans are non-zero but transverse normal stran s zero. Stran components: z z

hrd Order Plate heor: Dsplacement feld: 3 1 3 4 u,,z u, zu, z u, z u, 3 1 3 4 v,,z v, zv, z v, z v, w,,z w, 1 No transverse stresses on top and bottom face of plate. z z v w w v zv z v z 1 3 3 4 u w w u zu z u z 1 3 3 4

hrd Order Plate heor: Dsplacement feld: u v : s used smplf the feld 3 3 3 w1 3 w1 v4 4 : also used to smplf the feld v, u u 4 h 4h For the (earler) dsplacement feld the resultant moments and shear force H H H * 3 * 3 * 3,, M z dz M z dz M z dz H H H H H H H * * z, z, z, z Q dz Q dz Q z dz Q z dz H H H H

hrd Order Plate heor: Fnte Element Formulaton In the FE formulaton the defntons of are changed: Now there are seven varables per node! Dsplacement vector changed. L E, L B d s also L S s defned for shear part. Stran energ s d B AB d d B BB d E E B E e 1 U d BE BBB d d BB DBB d da A e d BS DS BS d

hrd Order Plate heor: Fnte Element Formulaton Stran Energ of an element n a concse form e 1 e U d K d where, K e s the element stffness matr K e 1 B E A BE BB B BE BE B BB BB D B B da A e BS DS BS

Hgher Order Plate heor: Most popular hgher order theores have constant or lnear varaton of transverse dsplacement. hat s, the transverse normal stran s zero or constant! he development of these theores was domnated b bendng loadng. he stretchng of aal part s not gven mportance. In case of unsmmetrc lamnates there s stretchng bendng couplng. hese theores ma not be sutable.

Hgher Order Plate heor: Dsplacement feld: u v w p, p, p p u z 1, u z 1 u,,z v pz 1 v,,z v, z w,,z 1 w pz 1 w, z 1 z z z - order of polnomal drector functons n z-drecton for u, v and w hese orders can be dfferent.

Hgher Order Plate heor: In general, p u z For bendng domnated problems p v z, v,,z u,,z w,,z - antsmmetrc wth respect to z (odd powers) - smmetrc wth respect to z (even powers) For frst order shear deformable theor hs s Denoted as: 1,1, u v w z z z p p 1, p For thrd order shear deformable theor hs s Denoted as: 3,3,

Hgher Order Plate heor: Natural Herarch of models for bendng domnated problems: 1,1,, 1,1,, 3,3,, 3,3,4, For membrane domnated problems: u,,z, v,,z - smmetrc wth respect to z (even powers) w,,z - antsmmetrc wth respect to z (odd powers) Natural Herarch of models for membrane domnated problems:,,1,,,1,,,3, 4,4,3,

Hgher Order Plate heor: For both bendng and membrane domnated problems: 1,1,1,,,, 3,3,3, 4,4,4, he sequences of the models were based on the convergence of ther solutons to the three dmensonal soluton n a sutable norm.

hank ou