Applied Mathematics Letters. Functional inequalities in non-archimedean Banach spaces

Similar documents
ABBAS NAJATI AND CHOONKIL PARK

NON-ARCHIMEDEAN BANACH SPACE. ( ( x + y

Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Tel.: ; Fax:

STABILITY OF A GENERALIZED MIXED TYPE ADDITIVE, QUADRATIC, CUBIC AND QUARTIC FUNCTIONAL EQUATION

Hyers-Ulam Rassias stability of Pexiderized Cauchy functional equation in 2-Banach spaces

Additive functional inequalities in Banach spaces

Fixed Point Approach to the Estimation of Approximate General Quadratic Mappings

ON THE STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION

Research Article On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces

Research Article The Stability of a Quadratic Functional Equation with the Fixed Point Alternative

Sang-baek Lee*, Jae-hyeong Bae**, and Won-gil Park***

FUNCTIONAL EQUATIONS IN ORTHOGONALITY SPACES. Choonkil Park

Approximate additive and quadratic mappings in 2-Banach spaces and related topics

A general theorem on the stability of a class of functional equations including quadratic additive functional equations

Homomorphisms in C -ternary algebras and JB -triples

A Fixed Point Approach to the Stability of a Quadratic-Additive Type Functional Equation in Non-Archimedean Normed Spaces

SUPERSTABILITY FOR GENERALIZED MODULE LEFT DERIVATIONS AND GENERALIZED MODULE DERIVATIONS ON A BANACH MODULE (II)

GENERAL QUARTIC-CUBIC-QUADRATIC FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN NORMED SPACES

Hyers-Ulam-Rassias Stability of a Quadratic-Additive Type Functional Equation on a Restricted Domain

THE GENERALIZED HYERS-ULAM STABILITY OF ADDITIVE FUNCTIONAL INEQUALITIES IN NON-ARCHIMEDEAN 2-NORMED SPACE. Chang Il Kim and Se Won Park

The Jensen functional equation in non-archimedean normed spaces

A QUADRATIC TYPE FUNCTIONAL EQUATION (DEDICATED IN OCCASION OF THE 70-YEARS OF PROFESSOR HARI M. SRIVASTAVA)

MIXED TYPE OF ADDITIVE AND QUINTIC FUNCTIONAL EQUATIONS. Abasalt Bodaghi, Pasupathi Narasimman, Krishnan Ravi, Behrouz Shojaee

On a functional equation connected with bi-linear mappings and its Hyers-Ulam stability

Stability of an additive-quadratic functional equation in non-archimedean orthogonality spaces via fixed point method

Research Article Functional Inequalities Associated with Additive Mappings

Research Article Fixed Points and Random Stability of a Generalized Apollonius Type Quadratic Functional Equation

A fixed point approach to orthogonal stability of an Additive - Cubic functional equation

Ann. Funct. Anal. 1 (2010), no. 1, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Jordan derivations on C -ternary algebras for a Cauchy-Jensen functional equation

Stability of Adjointable Mappings in Hilbert

Research Article Nearly Quadratic Mappings over p-adic Fields

AUTOMORPHISMS ON A C -ALGEBRA AND ISOMORPHISMS BETWEEN LIE JC -ALGEBRAS ASSOCIATED WITH A GENERALIZED ADDITIVE MAPPING

Stability and nonstability of octadecic functional equation in multi-normed spaces

On the stability of the functional equation f(x+ y + xy) = f(x)+ f(y)+ xf (y) + yf (x)

arxiv:math/ v1 [math.fa] 12 Nov 2005

Research Article A Functional Inequality in Restricted Domains of Banach Modules

The Australian Journal of Mathematical Analysis and Applications

Young Whan Lee. 1. Introduction

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED. Sungsik Yun

arxiv:math/ v1 [math.fa] 31 Dec 2005

GENERALIZED STABILITIES OF EULER-LAGRANGE-JENSEN (a, b)-sextic FUNCTIONAL EQUATIONS IN QUASI-β-NORMED SPACES

Quintic Functional Equations in Non-Archimedean Normed Spaces

On the Ulam stability of mixed type mappings on restricted domains

arxiv:math/ v1 [math.ca] 21 Apr 2006

Non-Archimedean Stability of the Monomial Functional Equations

PERTURBATIONS OF HIGHER JORDAN DERIVATIONS IN BANACH TERNARY ALGEBRAS :AN ALTERNATIVE FIXED POINT APPROACH

The general solution of a quadratic functional equation and Ulam stability

UNIQUENESS THEOREMS ON FUNCTIONAL INEQUALITIES CONCERNING CUBIC QUADRATIC ADDITIVE EQUATION

Research Article Approximately Quintic and Sextic Mappings Form r-divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method

GENERALIZED POPOVICIU FUNCTIONAL EQUATIONS IN BANACH MODULES OVER A C ALGEBRA AND APPROXIMATE ALGEBRA HOMOMORPHISMS. Chun Gil Park

Research Article Stabilities of Cubic Mappings in Fuzzy Normed Spaces

arxiv: v1 [math.fa] 30 Sep 2007

Refined Hyers Ulam approximation of approximately Jensen type mappings

THE NEARLY ADDITIVE MAPS

Generalized Hyers-Ulam Stability of General Cubic Functional Equation in Random Normed Spaces

First online - August 13, Draft version - August 13, 2016

ON PEXIDER DIFFERENCE FOR A PEXIDER CUBIC FUNCTIONAL EQUATION

Generalization of Ulam stability problem for Euler Lagrange quadratic mappings

On the Stability of J -Homomorphisms

On the Stability of J -Homomorphisms

A fixed point method for proving the stability of ring (α, β, γ)-derivations in 2-Banach algebras

Journal of Inequalities in Pure and Applied Mathematics

Research Article Approximation of Analytic Functions by Bessel s Functions of Fractional Order

On an equation characterizing multi-jensen-quadratic mappings and its Hyers Ulam stability via a fixed point method

arxiv:math/ v1 [math.fa] 1 Dec 2005

REMARKS ON THE STABILITY OF MONOMIAL FUNCTIONAL EQUATIONS

HYERS-ULAM STABILITY FOR SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

arxiv: v1 [math.ca] 31 Jan 2016

HYERS-ULAM-RASSIAS STABILITY OF JENSEN S EQUATION AND ITS APPLICATION

Shih-sen Chang, Yeol Je Cho, and Haiyun Zhou

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Fixed points and quadratic equations connected with homomorphisms and derivations on non-archimedean algebras

SOLUTION OF THE ULAM STABILITY PROBLEM FOR CUBIC MAPPINGS. John Michael Rassias National and Capodistrian University of Athens, Greece

Applied Mathematics Letters

Alireza Kamel Mirmostafaee

Research Article On the Stability of Alternative Additive Equations in Multi-β-Normed Spaces

ULAM-HYERS-RASSIAS STABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

Fixed point theorems of nondecreasing order-ćirić-lipschitz mappings in normed vector spaces without normalities of cones

Zygfryd Kominek REMARKS ON THE STABILITY OF SOME QUADRATIC FUNCTIONAL EQUATIONS

Research Article A Fixed Point Approach to the Stability of Quadratic Functional Equation with Involution

Banach Journal of Mathematical Analysis ISSN: (electronic)

Research Article Fixed Points and Generalized Hyers-Ulam Stability

Research Article A Fixed Point Approach to the Stability of Quintic and Sextic Functional Equations in Quasi-β-Normed Spaces

Yuqing Chen, Yeol Je Cho, and Li Yang

Solution and stability of a reciprocal type functional equation in several variables

CAUCHY RASSIAS STABILITY OF HOMOMORPHISMS ASSOCIATED TO A PEXIDERIZED CAUCHY JENSEN TYPE FUNCTIONAL EQUATION ABBAS NAJATI. 1.

IN AN ALGEBRA OF OPERATORS

Stability of Quintic Functional Equation in 2-Banach Space

Stability of a Functional Equation Related to Quadratic Mappings

2016 xó ADVANCES IN MATHEMATICS(CHINA) xxx., 2016

Approximate ternary quadratic derivations on ternary Banach algebras and C*-ternary rings

General solution and Ulam-Hyers Stability of Duodeviginti Functional Equations in Multi-Banach Spaces

NON-ARCHIMEDIAN STABILITY OF GENERALIZED JENSEN S AND QUADRATIC EQUATIONS. A. Charifi, S. Kabbaj and D. Zeglami


A Direct Proof of Caristi s Fixed Point Theorem

Finite Fields and Their Applications

On the Hyers-Ulam Stability of a System of Euler Differential Equations of First Order

Strong convergence theorems for asymptotically nonexpansive nonself-mappings with applications

On Quasi Quadratic Functionals and Existence of Related Sesquilinear Functionals

Transcription:

Applied Mathematics Letters 23 (2010) 1238 1242 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Functional inequalities in non-archimedean Banach spaces eol Je Cho a, Choonil Par b,, Reza Saadati c, a Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Republic of Korea b Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea c Department of Mathematics and Computer Science, Amirabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran a r t i c l e i n f o a b s t r a c t Article history: Received 17 January 2010 Received in revised form 16 May 2010 Accepted 2 June 2010 Keywords: Non-Archimedean Banach space Generalized Hyers Ulam stability Jordan von Neumann functional equation Functional inequality In this wor, we prove the generalized Hyers Ulam stability of the following functional inequality: ( ) f (x) + f (y) + f (z) f, < 3, in non-archimedean Banach spaces. 2010 Elsevier Ltd. All rights reserved. 1. Introduction and preliminaries A valuation is a function from a field K into [0, ) such that 0 is the unique element having the 0 valuation, rs = r s and the triangle inequality holds, i.e., r + s r + s, r, s K. A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are examples of valuations. Let us consider a valuation which satisfies a condition stronger than the triangle inequality. If the triangle inequality is replaced by r + s max{ r, s }, r, s K, then the function is called a non-archimedean valuation, and the field is called a non-archimedean field. Clearly, 1 = 1 = 1 and n 1 for all n 1. A trivial example of a non-archimedean valuation is the function taing everything except 0 into 1 and 0 = 0. Throughout this wor, we assume that the base field is a non-archimedean field and hence call it simply a field. Definition 1.1 ([1]). Let X be a vector space over a field K with a non-archimedean valuation. A function : X [0, ) is called a non-archimedean norm if the following conditions hold: (i) x = 0 if and only if x = 0 for all x X; (ii) rx = r x for all r K and x X; (iii) the strong triangle inequality holds: x + y max{ x, y }, x, y X. Then (X, ) is called a non-archimedean normed space. Corresponding author. Corresponding author. E-mail addresses: yjcho@gsnu.ac.r (.J. Cho), baa@hanyang.ac.r (C. Par), rsaadati@eml.cc, rezas720@yahoo.com (R. Saadati). 0893-9659/$ see front matter 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2010.06.005

.J. Cho et al. / Applied Mathematics Letters 23 (2010) 1238 1242 1239 Definition 1.2. Let {x n } be a sequence in a non-archimedean normed space X. (1) A sequence {x n } n=1 in a non-archimedean space is a Cauchy sequence iff the sequence {x n+1 x n } n=1 converges to zero. (2) The sequence {x n } is said to be convergent if, for any ε > 0, there are a positive integer N and x X such that x n x ε, n N. Then the point x X is called the limit of the sequence {x n }, which is denoted by lim n x n = x. (3) If every Cauchy sequence in X converges, then the non-archimedean normed space X is called a non-archimedean Banach space. The stability problem of functional equations originated from a question of Ulam [2] concerning the stability of group homomorphisms. Hyers [3] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers theorem was generalized by Aoi [4] for additive mappings and by Rassias [5] for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias [5] has had a lot of influence in the development of what we call generalized Hyers Ulam stability or Hyers Ulam Rassias stability of functional equations. A generalization of the Rassias theorem was obtained by Găvruta [6] by replacing the unbounded Cauchy difference by a general control function in the spirit of the Rassias approach. The stability problems for several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [7 15,5,16 22]). In 2007, Par et al. [23] investigated threevariable functional inequalities and proved the generalized Hyers Ulam stability of three-variable functional inequalities in Banach spaces. Also, the stability problems in non-archimedean Banach space are studied by Moslehian and Rassias [24], Moslehian and Sadeghi [1,25], Mirmostafaee [26] and Najati and Moradlou [27]. In this wor, we prove that if f satisfies the functional inequality ( ) f (x) + f (y) + f (z) f, < 3, (1.1) then f is additive, and prove the generalized Hyers Ulam stability of the functional inequality (1.1) in non-archimedean Banach spaces. Throughout this wor, assume that X is a non-archimedean normed space and that is a non-archimedean Banach space. Let 1; also we assume that 2 0 in K (i.e. the characteristic of K is not 2). 2. Generalized Hyers Ulam stability of the functional inequality (1.1) Let be a fixed integer greater than 3 and let < 3. Proposition 2.1. Let f : X be a mapping such that ( ) f (x) + f (y) + f (z) f, x, y, z X. (2.1) Then f is additive. Proof. Letting x = y = z = 0 in (2.1), we get 3f (0) f (0). Since 3 >, f (0) = 0. Letting z = 0 and y = x in (2.1), we get f (x) + f ( x) f (0) = 0 Hence f ( x) = f (x) for all x X. Letting z = x y in (2.1), we get f (x) + f (y) f (x + y) = f (x) + f (y) + f ( x y) f (0) = 0, x, y X. Thus we have f (x + y) = f (x) + f (y), x, y X. This completes the proof. Now, we prove the generalized Hyers Ulam stability of the functional inequality (1.1).

1240.J. Cho et al. / Applied Mathematics Letters 23 (2010) 1238 1242 Theorem 2.2. Let r < 1, θ be nonnegative real numbers and f : X be an odd mapping such that ( ) f (x) + f (y) + f (z) f + θ( x r X + y r X + z r X ), x, y, z X. (2.2) Then there exists a unique additive mapping A : X such that f (x) A(x) 2 + r (2.3) Proof. Letting y = x and z = 2x in (2.2), we get 2f (x) f (2x) = 2f (x) + f ( 2x) (2 + r ), x X, (2.4) ( x ) f (x) 2f 2 + r θ x r 2 r X Hence we have ( x ) 2 n+1 f 2 n f 2 + r 2 n+1 2 n (r 1)n+1 θ x r X, m, n 1 (m > l), x X. (2.5) { ( )} It follows from (2.5) that the sequence 2 x f is a Cauchy sequence for all x X. Since is a non-archimedean Banach 2 { ( )} space, the sequence 2 x f converges. So one can define the mapping A : X by 2 ( x ) A(x) := lim 2 f, 2 x X. Now, let T : X be another additive mapping satisfying (2.3). Then we have ( x ) A(x) T(x) = 2 q A 2 q T 2 q 2 q { 2 ( x ) ( max q A 2 q x ) } f, 2 q T 2 q f 2 q 2 q 2 q 2 q 2 + r (r 1)q+1 θ x r X, which tends to zero as q for all x X. So we can conclude that A(x) = T(x) for all x X. This proves the uniqueness of A. It follows from (2.2) that ( ( 2 n x ) ( y ) ( z )) A(x) + A(y) + A(y) = lim f + f + f n 2 n 2 n 2 n ( ) lim n θ n 2n f + lim 2 n n nr ( x r X + y r X + z r X ) ( ) = A, x, y, z X, ( ) A(x) + A(y) + A(z) A, x, y, z X. By Proposition 2.1, the mapping A : X is additive. This completes the proof. Theorem 2.3. Let r > 1, θ be nonnegative real numbers and f : X be an odd mapping satisfying (2.2). Then there exists a unique additive mapping A : X such that f (x) A(x) 2 + r

.J. Cho et al. / Applied Mathematics Letters 23 (2010) 1238 1242 1241 Proof. It follows from (2.4) that f (x) 1 2 f (2x) 2 + r Theorem 2.4. Let r < 1, θ be nonnegative real numbers and f : X be an odd mapping such that 3 ( ) f (x) + f (y) + f (z) f + θ x r X y r X z r X, x, y, z X. (2.6) Then there exists a unique additive mapping A : X such that f (x) A(x) r θ x 3r 3r X Proof. Letting y = x and z = 2x in (2.6), we get 2f (x) f (2x) = 2f (x) + f ( 2x) r θ x 3r X, x X, (2.7) ( x f (x) 2f 2) r θ x 3r 3r X Theorem 2.5. Let r > 1, θ be positive real numbers and f : X be an odd mapping satisfying (2.6). Then there exists a 3 unique additive mapping A : X such that f (x) A(x) r θ x 3r X Proof. It follows from (2.7) that f (x) 1 2 f (2x) r θ x 3r X Acnowledgements The authors would lie to than the referees for giving useful suggestions for the improvement of this wor. The first author was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF- 2008-313-C00050). The second author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2009-0070788). References [1] M.S. Moslehian, Gh. Sadeghi, A Mazur Ulam theorem in non-archimedean normed spaces, Nonlinear Anal. 69 (2008) 3405 3408. [2] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New or, 1960. [3] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222 224. [4] T. Aoi, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64 66. [5] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297 300. [6] P. Gavruta, A generalization of the Hyers Ulam Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431 436. [7] P. Czerwi, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore, London, 2002. [8] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Birhäuser, Basel, 1998. [9] S. Jung, Hyers Ulam Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press Inc., Palm Harbor, Florida, 2001. [10] C. Par, J. Cui, Generalized stability of C -ternary quadratic mappings, Abstr. Appl. Anal. 2007 (2007) Art. ID 23282. [11] C. Par, A. Najati, Homomorphisms and derivations in C -algebras, Abstr. Appl. Anal. 2007 (2007) Art. ID 80630. [12] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982) 126 130. [13] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984) 445 446. [14] J.M. Rassias, Refined Hyers Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. 131 (2007) 89 98. [15] J.M. Rassias, M.J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. 129 (2005) 545 558. [16] Th.M. Rassias, Problem 16; 2, in: Report of the 27th International Symp. on Functional Equations, in: Aequat. Math., vol. 39, 1990, pp. 292 293. 309. [17] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babeş-Bolyai XLIII (1998) 89 124. [18] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000) 352 378.

1242.J. Cho et al. / Applied Mathematics Letters 23 (2010) 1238 1242 [19] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264 284. [20] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23 130. [21] Th.M. Rassias, P. Šemrl, On the behaviour of mappings which do not satisfy Hyers Ulam stability, Proc. Amer. Math. Soc. 114 (1992) 989 993. [22] Th.M. Rassias, P. Šemrl, On the Hyers Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993) 325 338. [23] C. Par,. Cho, M. Han, Stability of functional inequalities associated with Jordan von Neumann type additive functional equations, J. Inequal. Appl. 2007 (2007) Art. ID 41820. [24] M.S. Moslehian, Th.M. Rassias, Stability of functional equations in non-archimedean spaces, Appl. Anal. Discrete Math. 1 (2007) 325 334. [25] M.S. Moslehian, Gh. Sadeghi, Stability of two types of cubic functional equations in non-archimedean spaces, Real Anal. Exchange 33 (2) (2007 2008) 375 384. [26] A.K. Mirmostafaee, Stability of quartic mappings in non-archimedean normed spaces, Kyungpoo Math. J. 49 (2009) 289 297. [27] A. Najati, F. Moradlou, Hyers Ulam Rassias stability of the Apollonius type quadratic mapping in non-archimedean spaces, Tamsui Oxf. J. Math. Sci. 24 (2008) 367 380.