Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ

Similar documents
Performance of semi-insulating. insulating GaAs-based radiation detectors: Role of key physical parameters of base material

Detectors for High Resolution Gamma-ray Imaging Based on a Single CsI(Tl) Scintillator Coupled to an Array of Silicon Drift Detectors

A monolithic array of silicon drift detectors coupled to a single scintillator for γ-ray imaging with sub-millimeter position resolution

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Lecture 8. Detectors for Ionizing Particles

Gamma-ray Spectroscopy with LaBr 3 :Ce Scintillator Readout by a Silicon Drift Detector

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy

Pulse Height Analysis System (PHA) designed for W7-X Presented by Monika KUBKOWSKA

On the development of compound semi-conductor thallium bromide detectors for astrophysics

Advantages / Disadvantages of semiconductor detectors

NEW X-RAY DETECTORS FOR XRF ANALYSIS. Jan S. Iwanczyk & Bradley E. Patt Photon Imaging, Inc., Northridge, CA 91324

Review of Semiconductor Drift Detectors

Advances in Compound Semiconductor Radiation Detectors. a review of recent progress

New trends in CdTe detectors for X and γ-ray applications

Silicon Drift Detectors for gamma-ray detection: 15 years of research (and collaboration between Politecnico and INAF-Milano)

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct.

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

InAs avalanche photodiodes as X-ray detectors

AGATA preamplifier performance on large signals from a 241 Am+Be source. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici

GaN for use in harsh radiation environments

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Lecture 18. New gas detectors Solid state trackers

Edgeless sensors for full-field X-ray imaging

Nuclear Lifetimes. = (Eq. 1) (Eq. 2)

Semiconductor Detectors

Impact of high photon densities on AGIPD requirements

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Hard Xray Diagnostic for Lower Hybrid Current Drive on Alcator C- Mod

CVD Diamond History Introduction to DDL Properties of Diamond DDL Proprietary Contact Technology Detector Applications BDD Sensors

SILICON DRIFT DETECTORS FOR HIGH RESOLUTION, HIGH COUNT RATE X-RAY SPECTROSCOPY AT ROOM TEMPERATURE

How we wanted to revolutionize X-ray radiography, and how we then "accidentally" discovered single-photon CMOS imaging

Pixels GaAs Detectors for Digital Radiography. M.E. Fantacci. and. Abstract

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

New perspectives in X-ray detection of concealed illicit materials brought by CdTe/CdZnTe spectrometric detectors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

He-3 Neutron Detectors

Semiconductor-Detectors

Impact of high photon densities on AGIPD requirements

High-resolution photoinduced transient spectroscopy of radiation defect centres in silicon. Paweł Kamiński

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY

Controlled Si-Drift Detectors

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Advances in the Micro-Hole & Strip Plate gaseous detector

Novel Plastic Microchannel-Based Direct Fast Neutron Detection

ORTEC. SLP Series Silicon Lithium-Drifted Planar Low-Energy X Ray Detector Product Configuration Guide

Gamma and X-Ray Detection

Silicon Detectors in High Energy Physics

High Purity Germanium Detector Calibration at ISOLDE

VORTEX A NEW HIGH PERFORMANCE SILICON DRIFT DETECTOR FOR XRD AND XRF APPLICATIONS

arxiv: v2 [physics.ins-det] 8 Feb 2013

DEPFET sensors development for the Pixel Detector of BELLE II

Analysis of Background Events in Silicon Drift Detectors

Peter Fischer, ziti, Universität Heidelberg. Silicon Detectors & Readout Electronics

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

Semiconductor Detectors

Summary of readout test of DSG prototype with IPA4 cold preamp. C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M.

Development of compound semiconductors for planetary and astrophysics space missions

Position sensitive detection of thermal neutrons with solid state detectors (Gd Si planar detectors)

X-ray spectrometry with Peltier-cooled large area avalanche photodiodes

CTU Prague RD50 Group

PHOTOELECTRON COLLECTION EFFICIENCY AT HIGH PRESSURE FOR A GAMMA DETECTOR ENVISAGING MEDICAL IMAGING

Energy calibration of the threshold of Medipix for ATLAS

GEM: A new concept for electron amplification in gas detectors

1) CMOS-Sensors for vertex-detectors 2) CMOS-Sensors for X-ray imaging 3) Sensor with a 3-T-preamplifier 4) Sensor with nearly full depletion

Chapter 4 Field-Effect Transistors

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

Solid State Detectors Semiconductor detectors Halbleiterdetektoren

Metallic magnetic calorimeters. Andreas Fleischmann Heidelberg University

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Bolometry. H. Kroegler Assciazione Euratom-ENEA sulla Fusione, Frascati (Italy)

Au-Ti THIN FILMS DEPOSITED ON GaAs

Development of New MicroStrip Gas Chambers for X-ray Applications

ORTEC. Review of the Physics of Semiconductor Detectors. Interaction of Ionizing Radiation with Semiconductor Detectors. Heavy Charged Particles

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Thermal measurement a requirement for monolithic microwave integrated circuit design

Status Report: Charge Cloud Explosion

Application of large-area avalanche photodiodes to energy-dispersive x-ray fluorescence analysis

Epitaxial SiC Schottky barriers for radiation and particle detection

Classification of Solids

A Radiation Monitoring System With Capability of Gamma Imaging and Estimation of Exposure Dose Rate

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers

Detection of X-ray spectra and images by Timepix

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

X-ray ionization yields and energy spectra in liquid argon

SUPPLEMENTARY INFORMATION

Development of semiconductor imaging detectors for a Si/CdTe Compton camera

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

GaAs X- Ray System Detectors for Medical Applications

The Attenuation of Neutrons in Barite Concrete

Lecture 9: Metal-semiconductor junctions

Recent Advances of Planar Silicon APD Technology

The Devices: MOS Transistors

Development of HPDs. for applications. in physics and medical imaging

The Hermes Recoil Silicon Detector

arxiv:physics/ v2 [physics.ins-det] 22 Nov 2005

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Transcription:

Progress in low energy X-rayX spectroscopy using semi-insulating insulating GaAs detectors F. Dubecký 1, B. Zaťko 1, P. Boháček 1, L. Ryć 2, E. Gombia 2, and V. Nečas 3 1 IEE SAS, Bratislava, Slovakia 2 IPP&LM, Warsaw, Poland 3 IMEM-CNR, Parma, Italy 4 FEE&IT SUT, Bratislava, Slovakia

Outline Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ and PA evaluation SI GaAs detector for low energy X-raysX Current-voltage measurement Detection of X and γ-rays Summary, conclusion

Introduction Semi-insulating GaAs as a material of radiation detector Wide bandgap energy E g = 1.42 ev Relative high atomic number 31 & 33: efficient detection of X- and gamma rays Fast reaction rate: high drift mobility High resistance to damage by irradiation Drawback: high leakage current at RT for application in soft X-ray spectroscopy

Motivation Energy gained from a fusion reaction could solve problem of energy Fusion has many attractive features in terms of safety, fuel reserves, and minimal damage to the environment The primary disadvantage being associated with difficult scientific and engineering challenges that are inherent in the fusion process Problem that must be solved: On-line hot plasma diagnostics Application in detection of Extreme UV photons

10 8 Attenuation coefficent µ, cm -1 10000 2.5x 23x 1000 100 10 1 1 10 Photon energy, kev GaAs Si InP CdTe V D (cms -1 ) 10 7 10 6 Electrons in GaAs Holes in GaAs Detector operation 10 5 region 10 2 10 3 10 4 10 5 10 6 E (Vcm -1 )

Measuring spectrometric system Battery voltage source U 0 COOLING NECCESSARY Required performance: Noise: < 100 e - rms SDD: < 140 ev FWHM 13 e - rms R b γ-photon SI GaAs Detector Charge sensitive preamplifier Eurorad PR-307 Shaping amplifier CREMAT CR-200 Analog-to-digital converter ORTEC 800 ADC e - h + J-FET ohmic contact pasive region depletion layer Schottky contact M2D multichannel analyzer MCA + PC

J-FETs evaluation 2000 2S K 152 G 8 1.48 k ev 2N 4416 1.54 kev B F 826 1.77 kev Counts per channel 1500 1000 5 0 0 0 0 2 0 4 0 60 8 0 1 0 0 1 2 0 140 1 6 0 1 8 0 C h a nnel Transistor Yfw, ms Ciss, pf Noise, nvhz-1/2 Package Notice 2SK152 25 7,2 1,20 TO92 obsolete, SMD unavailable BF862 45 9 0,8 TO236, SOT23 Noise at 100 khz, SMD 2N4416 6 2,20 6 TO72, TO236 SMD package available MX-16 28 4 1 TO72 Chip available, Ciss at -4 V MX-120 16 1,7 1,2 TO72 Chip available, Ciss at -4 V NJ14AL 5,5 2,3 4 Chip Chip U310 17 5 10 SMD package available SMPJ309 10 7,5 6 SMD package available SMPJ310 8 7,5? SMD package available

Preamplifiers testing and evaluation Counts per channel 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 2400 55 Fe: 5.9 kev Si3-8 V, E = 1.50 kev, ST = 1 µs, CR 102B Si3-8 V, E = 1.68 kev, ST = 1 µs, CR 110 (1) Si3-8 V, E = 1.65 kev, ST = 1 µs, CR 110 (2) 2200 2000 55 Fe: 5.9 kev Si3-8 V, E = 1.78 kev, ST = 1 µs, Eurorad PR 307 (1) 1800 Si3-8 V, E = 1.62 kev, ST = 1 µs, Eurorad PR 307 (2) Si3-18 V, E = 1.67 kev, ST = 1 µs, battery source 1600 0 5 10 15 20 25 30 35 40 45 50 55 60 65 Energy, kev 241 Am: 59.5 kev Counts per channel 1400 1200 1000 800 600 400 200 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 Energy, kev 241 Am: 59.5 kev Hybride Preamp, separated FET CR-110 CREMAT 1.5 kev CR-102B CREMAT, obsolete 1.2 kev PR307 EURORAD 0.85 kev A-250 AMPTEC 1 kev ASICS various < 300 ev * e.g. Bertuccio, G., Caccia, S., NIM A 579 (2007) 243 Noise FET dependent, @RT

Blocking scheme of developed charge sensitive preamplifier Part cooled by the Peltier cooler Charge sensitive preamplifier with cooled first stage and SI GaAs detector

Cooled stage detailed layout Temperature Sensor (AD590 chip) Testing capacitor SMD J-FET Substrate < 200 µm: Al 2 O 3 AlN Be-based ceramic SI GaAs detector Working resistor Feedback resistor Feedback capacitor 6x6 mm 2

Developed low noise preamplifiers Input J-FET Charge sensitive preamplifier based on CR-102B hybrid circuit and external input J-FET 2SK152 Noise: 135 e - rms at RT Detector SI GaAs detector is directly coupled to the input of the charge sensitive preamplifer

Charge sensitive preamplifier with Peltier cooler PR307 SI GaAs detector Cooled J-FET stage with detector SMD BF862 J-FET

New solution: 3 stage Peltier cooler Additional tasks neccessary to solve: input thin window with a low absorption collimator micro-temperature sensor efficient cooling of the heat sink compact bias source improvement of detector radiation and neutron damage resistance PR-307 CERAMIC SUPPORT with detector and J-FET

Compact DC biasb source Rechargable batteries (AA) 1k2 V 1 + C L 12 2 8 6 TMR dc-dc 1 7 +12 V 0 +V in V in 1 2 6 MHV Series 180, 300, 350 V out V ref 4 3 V adj 5 HV out C2 4700 pf V out Com 6-12 AA V 2 V 3 + C + C L L 2 6 TMR 1 2 6 TMR 1 7 8 7 8 0 0 1k2 1k2 +12 V Output 12 V +12 V Output 12 V R1 R2 VR = 5kΩ +/- 12 V bias for charge sensitive preamplifier and shaping amplifier High voltage output for detector

Simple SI GaAs detector for low energy X-raysX square 0.4 mm Ti/Pt/Au (10/40/70 nm) Schottky contact SI GaAs wafer (130 µm) AuGeNi/Au (50/70 nm) contact bulk VGF SI GaAs wafer (100) - detector grade producer: CMK Ltd. Žarovica, Slovakia RT resistivity: 1.8 10 7 Ωcm RT Hall mobility: 7060 cm 2 V -1 s -1

Current-voltage characteristic of SI GaAs detector @ RT 100n DC current decrease: 10 with each 20 deg. of temperature lowering: e.g. @ 260 K I sat 10 pa Current, A 10n 1n 100p Optimal operation area SI GaAs detector T = 300 K φ (Schottky) = 0.5 mm 0 200 400 600 Bias, V

Detection of X-X and γ-rays: @ RT 160 µm Counts per channel 2000 1500 1000 500 Np X Lα, Lβ, Lγ 13.9 17.8 kev 14.4 20.3 kev escape Ag K α 33.2 kev FWHM 7.7 kev γ 59.5 kev Pb K α and K β LEC SI GaAs 160 µm, φ = 0.5 mm 241 Am, 57 Co, RT Bias = - 250 V escape γ 122.1 kev 0 K α Ga & As *7 γ 136.5 kev 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Channel

RT pulse-height spectrum of 241 Am Counts 5000 4000 3000 2000 1000 Np X 241 Lα, Lβ, Lγ Am 17.8 kev 20.8 kev 13.9 kev 26.3 kev escape FWHM 5.11 kev U bias = - 130 V τ = 0.5 µs T = 295 K γ 59.5 kev 130 µm 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Energy, kev

LT: Pulse-height spectrum of 241 Am 5000 4000 Np X Lα, Lβ, Lγ 17.8 kev 241 Am U bias = - 130 V τ = 3 µs T = 255 K 130 µm Counts 3000 2000 1000 13.9 kev 20.8 kev 26.3 kev escape FWHM 4.64 kev γ 59.5 kev 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Energy, kev

RT&LT LT: Pulse-height spectrum of 241 Am using optimized electronics 4000 Np X Lα, Lβ, Lγ 17.8 kev 241 Am Spectra: RT and LT OPERATION 130 µm Counts 3000 2000 1000 13.9 kev 20.8 kev 26.3 kev escape U bias = - 110 V τ = 0.5 µs T = 295 K τ = 3 µs T = 255 K FWHM 4.3 kev 4.0 kev γ 59.5 kev 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Energy, kev

Energy resolution Temperature, K Energy resolution, % FWHM (kev) 295 295 improved 265 265 improved 17.8 kev peak < 25 (< 4.5) < 23 (< 4.2) < 22 (3.9) < 19 (< 3.6) < 16 (< 3.0) < 14 (< 2.8) 59.5 kev peak 8.6 (5.0) 12.9 (7.7) 7.2 (4.3) 7.8 (4.6) 7.2 (4.3) 6.8 (4.0)

Two-line SI GaAs detector module One detection mini-module with 2 64 pixel detectors Zaťko, B., Dubecký, F., Přibil, J., Boháček, P., Frollo, I., Ščepko, P., Mudroň, J., Grybos, P., and Nečas, V.: On the development of portable X-ray CT mini-system using semi-insulating GaAs radiation imaging detectors, Nuclear Instr. and Methods in Phys. Res. A 607 (2009) 67-70. IF: 1.019 COST MP601 Meeting

Block diagram of single channel Grybos et al.: IEEE Nucl. Sci. Sym. Conf. Record (2006) 693. Photograph of SI GaAs radiation detectors coupled to ASIC DX64 readout chip. Current (A) 1µ 100n 10n 1n 100p Forward Reverse T = 300 K 10p 0 50 100 150 200 250 300 350 400 Diameter 0.75 mm 0.5 mm 0.3 mm 0.2 mm Detector R Detector L Voltage (V) I-V characteristics of SI GaAs detectors measured at RT. Total counts 100k 10k 1k 100 Diameter, Bias = 220 V 0.75 mm 10 0.5 mm 0.3 mm 0.2 mm 1 0 50 100 150 200 250 Threshold Integral spectra of SI GaAs detectors measured using ASIC DX-64 readout chip. Total counts 1 400 1 200 1 000 800 600 400 200 0 RT 3.8 kev 0 10 20 30 40 50 60 70 80 Energy (kev) Calculated differential spectra of 241 Am measured using ASIC DX-64 with SI GaAs detector 0.3 mm in diameter

New choice: electrodes technology 1µ Forward 35,0n 300 V Noise rms 0-3 10-11 A Noise rms 0.1-2 10-11 A Current (A) 100n 10n 1n Reverse AuGeNi In Mg Gd Current (A) 30,0n 25,0n 20,0n 200 V Noise rms 1-3 10-12 A Noise rms 0.1-4.0 10-11 A AuGeNi In Mg Gd 0 100 200 300 400 Voltage (V) 0 5 10 15 20 25 30 35 40 Time (min) 20000 Counts per channel 10000 1000 100 noise SI GaAs: Schottky Ti/Pt/Au φ = 0.5 mm AuGeNi In Mg Gd Counts per channel 15000 10000 5000 SI GaAs: Schottky Ti/Pt/Au φ = 0.5 mm AuGeNi In Mg Gd 10 1 0 50 100 150 200 250 Channel 0 0 20 40 60 80 100 120 Channel

Conclusions We developed and tested charge sensitive preamplifiers with external J-FET operated at RT and lowered temperature. SI GaAs detector dc coupled to the developed front-end electronics gives detectable energy threshold of 4.5 kev at 295 K and < 3 kev at 265 K. Fabricated and evaluated surface SI GaAs Schottky barrier detector has an active base width of 130 µm and gives energy resolution of about 2.8 kev FWHM for 17.8 kev peak from 241 Am source at 265 K. The results show that first of all the noise of the front-end electronics chain must be reduced to <100 e - rms. Future plan toward spectrometric detector technology: electrodes, topology, material aspects, neutron damage

Acknowledgements This work was done within the Center of Excellence CENAMOST (Contract No. VVCE-0049-07) With parial support from grants: No. APVV 0655-07 (Slovak Research and Development Agency), No. 2/0163/09, 1/0689/09, 2/0192/10 (Grant Agency for Science), EURATOM/CU (Project P3) and COST MP0601

THANK YOU FOR YOUR ATTENTION