Use of Cp 2 TiCl in Synthesis

Similar documents
Chapter 22 Reactions of Carbohydrate Derivatives With Titanocene(III) Chloride

Rhodium Catalyzed Alkyl C-H Insertion Reactions

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Denmark s Base Catalyzed Aldol/Allylation

Stereoselective reactions of enolates

Stereoselective reactions of the carbonyl group

Short Literature Presentation 10/4/2010 Erika A. Crane

"-Amino Acids: Function and Synthesis

Morita Baylis Hillman Reaction. Aaron C. Smith 11/10/04

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

EWG EWG EWG EDG EDG EDG

Dual enantioselective control by heterocycles of (S)-indoline derivatives*

Recent Development in. Tandem Radical Reactions (TRR)

Chem 263 Notes March 2, 2006

Strategies for Catalytic Asymmetric Electrophilic a Halogenation of Carbonyl Compounds

Additions to Metal-Alkene and -Alkyne Complexes

Chiral Supramolecular Catalyst for Asymmetric Reaction

CuI CuI eage lic R tal ome rgan gbr ommon

REALLY, REALLY STRONG BASES. DO NOT FORGET THIS!!!!!

Reduction. Boron based reagents. NaBH 4 / NiCl 2. Uses: Zn(BH 4 ) 2. Preparation: Good for base sensitive groups Chelation control model.

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Zr-Catalyzed Carbometallation

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

Stereoselective Organic Synthesis

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Advanced Organic Chemistry

Electrophilic Carbenes

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

Suggested solutions for Chapter 32

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Asymmetric Catalysis by Lewis Acids and Amines

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

Ynolate Chemistry. Jeff Kallemeyn October 22, 2002

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Chiral Brønsted Acid Catalysis

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

22.7 Reactions of Amines: A Review and a Preview

REACTION AND SYNTHESIS REVIEW

Suggested solutions for Chapter 41

C H Activated Trifluoromethylation

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Highlights of Schmidt Reaction in the Last Ten Years

Organocopper Chemistry

c. Oxidizing agent shown here oxidizes 2º alcohols to ketones and 1º alcohols to carboxylic acids. 3º alcohols DO NOT REACT.

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

Organic Electron Donors

Stereoselective reactions of enolates: auxiliaries

Suggested solutions for Chapter 40

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Nucleophilic Heterocyclic Carbene Catalysis. Nathan Werner Denmark Group Meeting September 22 th, 2009

Catalysis by Group IV Elements CHEM 966 (Tunge) Good reference: Titanium and Zirconium in Organic Synthesis Ilan Marek Ed., 2002.

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

PAPER No. : Paper-9, Organic Chemistry-III (Reaction Mechanism-2) MODULE No. : Module-10, Hydroboration Reaction CHEMISTRY

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

Stereoselective Allylation of Imines. Joshua Pierce Research Topic Seminar

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Enantioselective Protonations

Journal Club Presentation by Remond Moningka 04/17/2006

Organocopper Reagents

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Chiral Catalysis. Chiral Catalyst. Substrate. Chiral Catalyst

Requirements for an Effective Chiral Auxiliary Enolate Alkylation

Facile preparation of α-amino ketones from oxidative ring-opening of aziridines by pyridine N-oxide

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

VI. Metal alkyls from oxidative addition / insertion

Homogeneous Catalysis - B. List

π-alkyne metal complex and vinylidene metal complex in organic synthesis

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Non-Linear Effects in Asymmetric Catalysis: A Useful Tool in Understanding Reaction Mechanisms. Group Meeting Aaron Bailey 12 May 2009

Disulfonimide-Catalyzed Asymmetric Vinylogous and Bisvinylogous Mukaiyama Aldol Reactions

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Paper 9: ORGANIC CHEMISTRY-III (Reaction Mechanism-2) Module 16: Reduction by Metal hydrides Part-I

Sonogashira: in situ, metal assisted deprotonation

Measuring enzyme (enantio)selectivity

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

12.5 Organometallic Compounds

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Tautomerism and Keto Enol Equilibrium

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

Mn Reagent & Organomanganese: Neglected Powerful Tool. Reporter: Li Zhuo Advisor: Prof. Yang Prof. Chen Prof. Tang

Transcription:

Use of 2 TiCl in Synthesis eagent Control of adical eactions Jeff Kallemeyn May 21, 2002

eactions of 2 TiCl 1. Pinacol Coupling H H H 2. Epoxide pening H H E H Chemoselectivity Activated aldehydes (aromatic, a,b-unsaturated) more reactive than aliphatic aldehydes. Esters, nitriles, ketones unaffected. Br, Cl, tosylate stable. Mild radical initiator.

Preparation of 2 TiCl Zn or Mn THF 15 min Ti IV Cl Cl Zn, neat Tl 2 III TiCl 3 Ti III Cl Cl M Cl Cl III Ti M=Zn ether Ti III Cl Cl Ti III Solvent (S) 2 Ti III Cl S Ti(III): [Ar] 3d 1 2 TiCl generated by in situ reduction with Mn or Zn. Both dimer and trimer work equally well in most cases. In situ regeneration of Ti(III) possible allowing it to function catalytically. M-Ti-M : 132 o. Jungst; D. Sekutiwski; J. Davis; M. Luly; G. Stucky, Inorg. Chem. 1977, 16, 1645.

Substrate Controlled Stereoselective adical eaction Substrate directs the stereoselectivity of the reaction. 1. Substrate has stereogenic center TMS TMS I Bu 3 SnH AIBN H H 72% yield D. Curran, D. akiewicz, Tetrahedron, 1985, 41, 3943. 2. Chiral Auxiliary t-bu N N t-bui Bu 3 SnH AIBN N N 70% yield, 86-97% ee. N. Porter, D. Scott, I. osenstein, B. Giese, A. Viet, H. Zeitz, J. Am. Chem. Soc. 1991, 113, 1791.

eagent Controlled Stereoselective adical eaction 1. Complexation t-bui, Et 3 B, 2 N Zn(Tf) 2, Ligand 5 mol% SnBu 3 t-bu N 92% yield, 90% ee N N Ph Ligand Ph Control Features: Chelation locks substrate into rigid conformation. Chiral ligand allows only 1 face of radical to be accessible. M. Sibi, N. Porter, Acc. Chem. es. 1999, 32, 163.

eagent Controlled Stereoselective adical eaction 2. Chiral Hydrogen Source Ac + Ph 3 SiH Ph 3 Si Ac Ac SH Ac 5 mol % Ph 3 Si H 72% yield, 50% ee M. Haque, B. oberts, Tetrahedron. Lett. 1996, 37, 9123. Ph Br CMe "Sn" Et 3 B Ph H CMe SnH Me 30% yield, 41% ee 3. Formation of radical: 2 TiCl D. Nanni, D. Curran, Tetrahedron Asymm. 1996, 37, 2417.

Pinacol Coupling H + S Cl Ti Ti 2 Cl Ti 2 Cl Cl 2 Ti Ti 2 Cl H 3 + H H General Mechanism Ti IV Cl CH 3 Distorted Tetrahedral Bond Lengths and angles Ti- 1.839 Cl-Ti- 93.8 Ti-Cl 2.412 -Ti_M(1) 109.6 Ti-M 2.088 -Ti-M(2) 105 Ti-M 2.093 Cl-Ti-M(1) 105 -C 1.367 Cl-Ti-M(2) 106.3 M(1)-Ti-M(2) 130.8 Ti--C 141.4 Y. Handa, J. Inanaga, Tetrahedron Lett. 1987, 28, 5717. D. Gibson, Y. Ding, M. Mashuta, J. ichardson, Acta Crys. 1996, 52, 559.

Pinacol Coupling Cl Cl Proposed intermediate leading to high diastereoselectivity. Y. Handa, J. Inanaga, Tetrahedron Lett. 1987, 28, 5717.

Development of Catalytic Pinacol Coupling Cl 2 Ti Ti 2 Cl 2 TMSCl TMS TMS + 2 Ti 2 Cl 2 Product resting state before hydrolysis T. Hirao, B. Hatano, M. Asahara, Y. Muguruma, A. gawa, Tetrahedron Lett. 1998, 39, 5247.

Development of Catalytic Pinacol Coupling TMSCl and Zn can effect the pinacol coupling and proceeds with low diastereoselctivity. Initial catalytic reactions gave worse diastereoselectivities than stoichiometric (86:14 to 50:50). Silylation of Ti alkoxide determined to be the slow step in the reaction. Low diastereoselectivies solved by slow addition of TMSCl, MgBr 2 and aldehyde to Ti(III) and Zn. cis:trans A. Gansäuer, Synlett. 1998, 801.

Modification of Catalytic Pinacol Coupling adicals are stable under protic conditions. Selection of correct base important as to not oxidize the metal reductant or complex with the Titanium catalyst. Addition of Amine HCl salt leads to increased diastereoselectivity, faster turnover compared to TMSCl catalyzed system. H H Ar Ar Ar Ar 1 H 2 H 2,4,6-Collidine eference A. Gansäuer, D. Bauer, J. rg. Chem. 1998, 63, 2070.

Enantioselective Pinacol Coupling M. Dunlap, K. Nicholas, Syn. Comm. 1999, 29, 1097. A. Bensari, J. enaud,. iant, rg. Lett. 2001, 3, 3863.

Mechanism of Epoxide pening Product ratios show higher substituted radical formed. Titanium attached to radical it created--reagent control. Ti 2 Cl Ti 2 Cl 2 TiCl Ti 2 Cl Ti 2 Cl D 3 + D D Ti 2 Cl D D 8 eductive termination pathway depends on reactivity of intermediate radical. + D 7 T. ajanbabu, W. Nugent, J. Am. Chem. Soc. 1994, 116, 986. A. Gansäuer, H. Bluhm, Chem. ev. 2000, 100, 2771.

Epoxide pening and Trapping C 8 H 17 + CN 1) 2 TiCl 2) H 3 + H CN H 17 C 8 H17 C 8 H 88% 12% adical formation at the higher substituted carbon. CN Electrophilic workup Complementary to nucleophilic epoxide opening T. ajanbabu, W. Nugent, J. Am. Chem. Soc. 1994, 116, 986.

Diastereoselectivity in 5-member ring formation H CH 3 Y Y= CH 2, NTs, 10 mol% 2 TiCl 2 Mn, Coll*HCl THF H Y A. Gansäuer, M. Pierobon, H. Bluhm, Synthesis 2001, 2500

Diastereoselectivity in 5-member ring formation A. Gansäuer, M. Pierobon, H. Bluhm, Synthesis 2001, 2500.

Deoxygenation of Epoxides Deoxygenation discouraged in the presence of trapping agents with inverse addition of 2 TiCl to minimize the concentration of Ti(III). Effective for sensitive functional groups, especially acid sensitive. T. ajanbabu, W. Nugent, J. Am. Chem. Soc. 1994, 116, 986

Effects of Solvent and Water Conditions (+)-3a-hydroxyreynosin A. Barrero, J. ltra, J. Cuerva, A. osales, J. rg. Chem. 2002, 67, 2566.

Effects of Solvent and Water Proposed concerted transition state leads only to 6-endo cyclization with no 5-exo product. Tertiary radical hindered--it is not trapped by Ti(III) or reduced by 1,4- cyclohexadiene. Deuterium incorporation is observed at C4 when D 2 is used. A. Barrero, J. ltra, J. Cuerva, A. osales, J. rg. Chem. 2002, 67, 2566.

Formation of a-glycosides eaction Scheme Complementary to Nucleophile eaction Scope J. Parrish,. Little, rg. Lett. 2002, 4, 1439

Formation of a-glycosides eduction Lewis acidic epoxide opening yields the undesired product. Trapping agent must be of the correct electronic nature. J. Parrish,. Little, rg. Lett. 2002, 4, 1439

Catalytic Epoxide pening A. Gansäuer, H. Bluhm, Chem. ev. 2000, 100, 2771 A. Gansäuer, M. Pierobon, H. Bluhm, Angew. Chem, Int. Ed. 1998, 37, 101

Catalytic Asymmetric Epoxide pening 6 A. Gansäuer, H. Bluhm, Chem. ev. 2000, 100, 2771. A. Gansäuer, H. Bluhm, M. Pierobon, M. Keller, rganometallics, 2001, 20, 914. 7

Catalytic Asymmetric Epoxide pening 7 7 7 7 6 6 6 6 eference A. Gansäuer, H. Bluhm, T. Lauterbach, Adv. Synth. Catal. 2001, 343, 785

Conclusion 2 TiCl is a mild reducing agent for pinacol and epoxide opening reactions. pposite chemoselectivity to nucleophilic epoxide opening. eagent controlled enantioselective modifications to the Ti(III) reagent now emerging. A wide range of functional groups are tolerated. The oxidation/reduction of reagents and substrates can have significant effect on success of reaction.

. Flowers, Tetrahedron Lett. 1997, 1137 T. Skrydstrup, Chemistry, 2001, 435 Li--Li + + e Na--Na + + e Mg --> Mg 2+ + 2e Al --> Al 3+ + 3e Mn --> Mn 2+ + 2e Zn --> Zn 2+ + 2e Fe --> Fe 2+ + 2e Ni --> Ni 3+ + 3e E o reduction potential 3.05 2.71 Ti(IV) --> Ti(II) 2.37 1.66 1.18 Ti(IV) --> Ti(III) 0.76 0.44 Ti(III) + MCl x --> Ti(IV) + M 0.25 D. Sekutowski, Low Valent rganometallic Titanium Compounds, Dissertation, UIUC, 1975