Chapter 14. The Ideal Gas Law and Kinetic Theory

Similar documents
Chapter 14. The Ideal Gas Law and Kinetic Theory

Fluids Bernoulli s equation conclusion

Fluids Bernoulli s equation conclusion

Chapter 14. The Ideal Gas Law and Kinetic Theory

Kinetic Theory continued

Kinetic Theory continued

Lecture 24. Ideal Gas Law and Kinetic Theory

14 The IDEAL GAS LAW. and KINETIC THEORY Molecular Mass, The Mole, and Avogadro s Number. Atomic Masses

Lecture 24. Ideal Gas Law and Kinetic Theory

Chapter 12. Temperature and Heat. continued

The first law of thermodynamics continued

Physics 1501 Lecture 35

Chapter 15 Thermal Properties of Matter

CH 15. Zeroth and First Law of Thermodynamics

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

Ch. 19: The Kinetic Theory of Gases

Temperature, Thermal Expansion and the Gas Laws

Chapter 13: Temperature, Kinetic Theory and Gas Laws

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

(2) The volume of molecules is negligible in comparison to the volume of gas. (3) Molecules of a gas moves randomly in all direction.

The Kinetic Theory of Gases

Chapter 18 Thermal Properties of Matter

Ideal Gases. 247 minutes. 205 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Class: Date: Time: Marks: Comments:

CHAPTER 16 A MACROSCOPIC DESCRIPTION OF MATTER

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Chapter 17 Temperature & Kinetic Theory of Gases 1. Thermal Equilibrium and Temperature

10/12/10. Chapter 16. A Macroscopic Description of Matter. Chapter 16. A Macroscopic Description of Matter. State Variables.

Homework: 13, 14, 18, 20, 24 (p )

Atomic Mass and Atomic Mass Number. Moles and Molar Mass. Moles and Molar Mass

Understanding KMT using Gas Properties and States of Matter

Thermal Properties of Matter (Microscopic models)

Revision Guide for Chapter 13

Physics 2 week 7. Chapter 3 The Kinetic Theory of Gases

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Chapter 10: Thermal Physics

Specific Heat of Diatomic Gases and. The Adiabatic Process

Physics 4C Chapter 19: The Kinetic Theory of Gases

PhysicsAndMathsTutor.com 1 2 (*) (1)

Chapter 19 The First Law of Thermodynamics

PHY101: Major Concepts in Physics I. Photo: J. M. Schwarz

Handout 11: Ideal gas, internal energy, work and heat. Ideal gas law

Quiz C&J page 365 (top), Check Your Understanding #12: Consider an ob. A) a,b,c,d B) b,c,a,d C) a,c,b,d D) c,b,d,a E) b,a,c,d

Chapter 10. Thermal Physics

Chapter 15: Thermal Properties of Matter

(a) (i) One of the assumptions of the kinetic theory of gases is that molecules make elastic collisions. State what is meant by an elastic collision.

Temperature and Thermometers. Temperature is a measure of how hot or cold something is. Most materials expand when heated.

Lecture 25 Thermodynamics, Heat and Temp (cont.)

Lesson 12. Luis Anchordoqui. Physics 168. Tuesday, November 28, 17

Heat, Work, Internal Energy, Enthalpy, and the First Law of Thermodynamics. Internal Energy and the First Law of Thermodynamics

Revision Guide for Chapter 13

Chapter 19: The Kinetic Theory of Gases Questions and Example Problems

Topic 3 &10 Review Thermodynamics

Unit 05 Kinetic Theory of Gases

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Phase Changes and Latent Heat

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

Compiled and rearranged by Sajit Chandra Shakya

Chapters 17 &19 Temperature, Thermal Expansion and The Ideal Gas Law

Chapter 3. Atomic Number. Atomic Number. Section 3. Atoms of different elements have different numbers of protons.

Chapter 1. The Properties of Gases Fall Semester Physical Chemistry 1 (CHM2201)

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.

Physics 141. Lecture 24.

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution


Chapter 12. Answers to examination-style questions. Answers Marks Examiner s tips

Chapter 5 The Gaseous State

Chapter 10 Temperature and Heat

KINETIC THEORY OF GASES

ε tran ε tran = nrt = 2 3 N ε tran = 2 3 nn A ε tran nn A nr ε tran = 2 N A i.e. T = R ε tran = 2

Although different gasses may differ widely in their chemical properties, they share many physical properties

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell

Properties of Gases. Molecular interactions van der Waals equation Principle of corresponding states

CHAPTER III: Kinetic Theory of Gases [5%]

Physics 141. Lecture 24. December 5 th. An important day in the Netherlands. Physics 141. Lecture 24. Course Information. Quiz

Thermodynamics. Atoms are in constant motion, which increases with temperature.

Section Using Gas Laws to Solve Problems

Module 5: Rise and Fall of the Clockwork Universe. You should be able to demonstrate and show your understanding of:

QuickCheck. Collisions between molecules. Collisions between molecules

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

Lecture 3. The Kinetic Molecular Theory of Gases

Physics 231 Topic 12: Temperature, Thermal Expansion, and Ideal Gases Alex Brown Nov

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Chapter 10 Notes: Gases

Collisions between molecules

10 TEMPERATURE, THERMAL EXPANSION, IDEAL GAS LAW, AND KINETIC THEORY OF GASES.

Thermodynamic Processes and Thermochemistry

Chapter 10. Thermal Physics. Thermodynamic Quantities: Volume V and Mass Density ρ Pressure P Temperature T: Zeroth Law of Thermodynamics

Gases and Kinetic Molecular Theory

Comparison of Solids, Liquids, and Gases

Gases, Liquids, Solids, and Intermolecular Forces

AP Chemistry Ch 5 Gases

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry

NY Times 11/25/03 Physics L 22 Frank Sciulli slide 1

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K

Tuesday April 18 Topics for this Lecture: Thermodynamics Kinetic Theory Ideal Gas Law Laws of Thermodynamics PV diagrams & state transitions

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

Rate of Heating and Cooling

Transcription:

Chapter 14 The Ideal Gas Law and Kinetic Theory

14.1 Molecular Mass, the Mole, and Avogadro s Number The atomic number of an element is the # of protons in its nucleus. Isotopes of an element have different # of neutrons in its nucleus. The atomic mass unit (symbol u) is used to compare the mass of elements. The reference is the most abundant isotope of carbon, which is called carbon-12. 1 u = 1.6605 10 24 g = 1.6605 10 27 kg The atomic mass is given in atomic mass units. For example, a Li atom has a mass of 6.941u. One mole (mol) of a substance (element or molecule) contains as many particles as there are atoms in 12 grams of the isotope carbon-12. The number of atoms in 12 grams of carbon-12 is known as Avogadro s number, N A. Avogadro s number

14.1 Molecular Mass, the Mole, and Avogadro s Number The mass per mole (in g/mol) of a substance has the same numerical value as the atomic or molecular mass of the substance (in atomic mass units). For example Hydrogen has an atomic mass of 1.00794 g/mol, while the mass of a single hydrogen atom is 1.00794 u. N : # of atoms or molecules, n : # of moles of element or molecule m p : atomic mass (amu) also grams/mole N = nn A m = nm p

14.1 Molecular Mass, the Mole, and Avogadro s Number Example 1 Hope Diamond & Rosser Reeves Ruby (a) The Hope diamond (44.5 carats) is almost pure carbon. The Rosser Reeves ruby (138 carats) is primarily aluminum oxide (Al 2 O 3 ). One carat is equivalent to a mass of 0.200 g. Determine (a) the number of carbon atoms in the Hope diamond and (b) the number of Al 2 O 3 molecules in the ruby. n = m Mass per mole ( ) ( 0.200 g) ( 1 carat) 44.5 carats = 12.011g mol 2( 26.98) + 3( 15.99) = 0.741 mol g/mole N = nn A = ( 0.741 mol) ( 6.022 10 23 mol ) 1 = 4.46 10 23 atoms (b) n = m Mass per mole ( ) ( 0.200 g) ( 1 carat) 138 carats = 101.96g mol = 0.271 mol N = nn A = ( 0.271 mol) ( 6.022 10 23 mol ) 1 = 1.63 10 23 atoms

14.2 The Ideal Gas Law An ideal gas is an idealized model for real gases that have sufficiently low densities, interacting only by elastic collisions. At constant volume the pressure is proportional to the temperature. At constant temperature, the pressure is inversely proportional to the volume. The pressure is also proportional to the amount of gas. P n

14.2 The Ideal Gas Law THE IDEAL GAS LAW The absolute pressure of an ideal gas is directly proportional to the Kelvin temperature and the number of moles (n) of the gas and is inversely proportional to the volume of the gas. R = 8.31J ( mol K) Another form for the Ideal Gas Law using the number of atoms (N) PV = nrt = N R N A T PV = NkT N = nn A ( mol K ) k = R = 8.31J N A 6.022 10 23 mol = 1.38 1 10 23 J K

14.2 The Ideal Gas Law Example 2 Oxygen in the Lungs In the lungs, the respiratory membrane separates tiny sacs of air (pressure 1.00x10 5 Pa) from the blood in the capillaries. These sacs are called alveoli. The average radius of the alveoli is 0.125 mm, and the air inside contains 14% oxygen. Assuming that the air behaves as an ideal gas at 310K, find the number of oxygen molecules in one of these sacs. PV = NkT N tot = PV 1.00 10 5 Pa kt = 1.38 10 23 J K = 1.9 10 14 ( ) 4 π ( 3 0.125 10 3 m) 3 ( ) 310 K ( ) N Oxy = ( 1.9 10 14 ) ( 0.14) = 2.7 10 13

14.3 Kinetic Theory of Gases The particles are in constant, random motion, colliding with each other and with the walls of the container. Each collision changes the particle s speed. As a result, the atoms and molecules have different speeds.

14.3 Kinetic Theory of Gases THE DISTRIBUTION OF MOLECULAR SPEEDS

14.3 Kinetic Theory of Gases KINETIC THEORY F = ma = m Δv Δt = Δ ( mv ) Δt Average force on each gas molecule when hitting the wall = = Final momentum-initial momentum Time between successive collisions ( mv) +mv 2L v ( ) = mv2 L Average force on the wall F = N 3 mv 2 L P = F A = F L = N 2 3 mv 2 L 3 PV = NkT PV = N 3 mv2 = 2 N 1 3 2 mv2 ( ) KE = 1 2 mv2 v rms = v 2 root mean square speed Temperature reflects the average Kinetic Energy of the molecules 3 kt = 1 mv 2 2 2 rms = KE k = 1.38 10 23 J K

14.3 Kinetic Theory of Gases Example 6 The Speed of Molecules in Air Air is primarily a mixture of nitrogen N 2 molecules (molecular mass 28.0u) and oxygen O 2 molecules (molecular mass 32.0u). Assume that each behaves as an ideal gas and determine the rms speeds of the nitrogen and oxygen molecules when the temperature of the air is 293K. T must be in Kelvin (K = C +273) Nitrogen molecule 28.0g mol m = 6.022 10 23 mol 1 = 4.65 10 26 kg v rms = 3kT m ( ) 293K = 3 1.38 10 23 J K 4.65 10 26 kg ( ) = 511m s Molecules are moving really fast but do not go very far before hitting another molecule.

14.3 Kinetic Theory of Gases THE INTERNAL ENERGY OF A MONATOMIC IDEAL GAS Average KE per atom multiply by the number of atoms Total Internal Energy THE INTERNAL ENERGY OF A MOLECULAR GAS MUST INCLUDE MOLECULAR VIBRATIONS! H 2, N 2, H 2 O, SO 2, CO 2, (most gases except Nobel gases)

14.4 Diffusion The process in which molecules move from a region of higher concentration to one of lower concentration is called diffusion. FICK S LAW OF DIFFUSION The mass m of solute that diffuses in a time t through a solvent contained in a channel of length L and cross sectional area A is m = DA(ΔC)t L SI Units for the Diffusion Constant: m 2 /s D ΔC Diffusion constant Concentration gradient between ends

14.4 Diffusion Diffusion analogous to heat flow m t = DA(ΔC) L Q t = ka(δt ) L

Chapter 15 Thermodynamics

15.1 Thermodynamic Systems and Their Surroundings Thermodynamics is the branch of physics that is built upon the fundamental laws that heat and work obey. The collection of objects on which attention is being focused is called the system, while everything else in the environment is called the surroundings. Walls that permit heat flow are called diathermal walls, while walls that do not permit heat flow are called adiabatic (NO HEAT FLOW) walls To understand thermodynamics, it is necessary to describe the state of a system.

15.2 The Zeroth Law of Thermodynamics Two systems are said to be in thermal equilibrium if there is no heat flow between them when in contact. Temperature: there is no net flow of heat between two systems in thermal contact that have the same temperature. THE ZEROTH LAW OF THERMODYNAMICS Two systems individually in thermal equilibrium with a third system are in thermal equilibrium with each other.

15.3 The First Law of Thermodynamics 1) Suppose that a system only gains heat (Q) and nothing else changes. Consistent with the law of conservation of energy, the internal energy (U) of the system changes: Q > 0 system gains heat 2) If a system does work W on its surroundings but there is no heat flow, (adiabatic) conservation of energy indicates that the internal energy of the system will decrease: W > 0 if system does work THE FIRST LAW OF THERMODYNAMICS The internal energy of a system changes due to heat and work: Q > 0 system gains heat W > 0 if system does work

15.3 The First Law of Thermodynamics Example 1 Positive and Negative Work In part (a) of figure, the system gains 1500J of heat and 2200J of work is done by the system on its surroundings. In part (b), the system also gains 1500J of heat, but 2200J of work is done on the system. In each case, determine the change in internal energy of the system. (a) (b) ΔU = Q W ( ) ( +2200 J) = 700 J = +1500 J ΔU = Q W ( ) ( 2200 J) = +3700 J = +1500 J

15.3 The First Law of Thermodynamics Example 2 An Ideal Gas The temperature of three moles of a monatomic ideal gas is reduced from 540K to 350K as 5500J of heat flows into the gas. Find (a) the change in internal energy and (b) the work done by the gas. U = 3 2 nrt (a) ( ) ΔU = 3 2 nr T f T i = 3 2 ( ( ))( 350 K 540 K) ( 3.0 mol) 8.31 J mol K = 7100 J (b) W = Q ΔU ( ) = 5500 J 7100 J = 12600 J

15.4 Thermal Processes A quasi-static process is one that occurs slowly enough that a uniform temperature and pressure exist throughout all regions of the system at all times. isobaric: constant pressure isochoric: constant volume isothermal: constant temperature W = PΔV = 0 W = nrt ln V f ( V ) i ideal gas adiabatic: no transfer of heat W = 3 nr ( T T ) 2 f i ideal gas

15.4 Thermal Processes An isobaric process is one that occurs at constant pressure. W = Fs = P( As) = PΔV Isobaric process: W = PΔV = P( V f V ) i

15.4 Thermal Processes Example 3 Isobaric Expansion of Water One gram of water is placed in the cylinder and the pressure is maintained at 2.0x10 5 Pa. The temperature of the water is raised by 31 o C. The water is in the liquid phase and expands by the small amount of 1.0x10-8 m 3. Find the work done and the change in internal energy. W = PΔV ( )( 1.0 10 8 m 3 ) = 0.0020J = 2.0 10 5 Pa Q = mcδt ( ) 4186J kg C = 0.0010 kg ( ) ΔU = Q W = 130 J 0.0020 J = 130 J ( 31 ) C = 130 J Liquid water ΔV ~ 0

15.4 Thermal Processes Example 3 Isobaric Expansion of Water Vapor One gram of water vapor is placed in the cylinder and the pressure is maintained at 2.0x10 5 Pa. The temperature of the vapor is raised by 31 o C, and the gas expands by 7.1x10 5 m 3. Heat capacity of the gas is 2020 J/(kg-C ). Find the work done and the change in internal energy. W = PΔV = (2.0 10 5 Pa)(7.1 10 5 m 3 ) = 14.2 J Q = mcδt ( ) 2020J kg C = 0.0010 kg ( ) ΔU = Q W = 63 J 14 J = 49 J ( 31 ) C = 63 J

15.4 Thermal Processes The work done at constant pressure the work done is the area under a P-V diagram.

15.4 Thermal Processes isochoric: constant volume The work done at constant volume is the area under a P-V diagram. The area is zero! W = 0 Change in internal energy is equal to the heat added.

15.4 Thermal Processes Example 4 Work and the Area Under a Pressure-Volume Graph Determine the work for the process in which the pressure, volume, and temperature of a gas are changed along the straight line in the figure. The area under a pressure-volume graph is the work for any kind of process. W = 9( 2.0 10 5 Pa) ( 1.0 10 4 m 3 ) = +180 J