Existence and Uniqueness of Solution for a Fractional Order Integro-Differential Equation with Non-Local and Global Boundary Conditions

Similar documents
Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Laplace s equation in Cylindrical Coordinates

4-4 E-field Calculations using Coulomb s Law

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY

Generalized Hermite-Hadamard-Fejer type inequalities for GA-convex functions via Fractional integral

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x.

TWO DIMENSIONAL INTERPOLATION USING TENSOR PRODUCT OF CHEBYSHEV SYSTEMS

Linear predictive coding

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT

EE Control Systems LECTURE 8

Green function and Eigenfunctions

On New Inequalities of Hermite-Hadamard-Fejer Type for Harmonically Quasi-Convex Functions Via Fractional Integrals

Bernoulli Numbers Jeff Morton

APPENDIX 2 LAPLACE TRANSFORMS

Calculus of variations with fractional derivatives and fractional integrals

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás

Proc. of the 8th WSEAS Int. Conf. on Mathematical Methods and Computational Techniques in Electrical Engineering, Bucharest, October 16-17,

20.2. The Transform and its Inverse. Introduction. Prerequisites. Learning Outcomes

Dynamics and stability of Hilfer-Hadamard type fractional differential equations with boundary conditions

New Expansion and Infinite Series

Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations

PHYS 601 HW 5 Solution. We wish to find a Fourier expansion of e sin ψ so that the solution can be written in the form

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems

Research Article Generalized Hyers-Ulam Stability of the Second-Order Linear Differential Equations

SIMULATION OF TRANSIENT EQUILIBRIUM DECAY USING ANALOGUE CIRCUIT

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Accelerator Physics. G. A. Krafft Jefferson Lab Old Dominion University Lecture 5

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Hyers-Ulam and Hyers-Ulam-Aoki-Rassias Stability for Linear Ordinary Differential Equations

2. The Laplace Transform

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Summary: Method of Separation of Variables

MAC-solutions of the nonexistent solutions of mathematical physics

Mathematics. Area under Curve.

Solutions Problem Set 2. Problem (a) Let M denote the DFA constructed by swapping the accept and non-accepting state in M.

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications

(PDE) u t k(u xx + u yy ) = 0 (x, y) in Ω, t > 0, (BC) u(x, y, t) = 0 (x, y) on Γ, t > 0, (IC) u(x, y, 0) = f(x, y) (x, y) in Ω.

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved.

Taylor Polynomial Inequalities

Torsion in Groups of Integral Triangles

Section 3.3: Fredholm Integral Equations

PHYS 601 HW3 Solution

Chapter 6 Techniques of Integration

Research Article Analytical Solution of the Fractional Fredholm Integrodifferential Equation Using the Fractional Residual Power Series Method

The Modified Heinz s Inequality

On the Adders with Minimum Tests

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

Lyapunov-type inequality for the Hadamard fractional boundary value problem on a general interval [a; b]; (1 6 a < b)

Module 9: The Method of Green s Functions

In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)

21.6 Green Functions for First Order Equations

df dt f () b f () a dt

Adomian Decomposition Method with Green s. Function for Solving Twelfth-Order Boundary. Value Problems

u(t)dt + i a f(t)dt f(t) dt b f(t) dt (2) With this preliminary step in place, we are ready to define integration on a general curve in C.

Chapter 8.2: The Integral

MATH 260 Final Exam April 30, 2013

Applicability of Matrix Inverse in Simple Model of Economics An Analysis

STABILITY and Routh-Hurwitz Stability Criterion

Note on Sequence of Functions involving the Product of E γ,k

Sturm-Liouville Theory

Application Chebyshev Polynomials for Determining the Eigenvalues of Sturm-Liouville Problem

M. A. Pathan, O. A. Daman LAPLACE TRANSFORMS OF THE LOGARITHMIC FUNCTIONS AND THEIR APPLICATIONS

Lecture 24: Laplace s Equation

Generalized Surface Area of Revolution

PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule

An iterative method for solving nonlinear functional equations

QUADRATURE is an old-fashioned word that refers to

The Hadamard s inequality for quasi-convex functions via fractional integrals

Math 1431 Section 6.1. f x dx, find f. Question 22: If. a. 5 b. π c. π-5 d. 0 e. -5. Question 33: Choose the correct statement given that

Section 4: Integration ECO4112F 2011

Fatigue Failure of an Oval Cross Section Prismatic Bar at Pulsating Torsion ( )

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

A short introduction to local fractional complex analysis

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

Chapter 9 Definite Integrals

MUHAMMAD MUDDASSAR AND AHSAN ALI

k and v = v 1 j + u 3 i + v 2

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

The Z transform techniques

Chapter 1. Linear Algebra

Some Hermite-Hadamard type inequalities for functions whose exponentials are convex

MA FINAL EXAM INSTRUCTIONS

Chapter 7. Root Locus Analysis

ON A GENERALIZED STURM-LIOUVILLE PROBLEM

Section 6.1 INTRO to LAPLACE TRANSFORMS

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

A Computational Method for Solving Linear Volterra Integral Equations

Bob Brown Math 251 Calculus 1 Chapter 5, Section 4 1 CCBC Dundalk

Properties of Jensen m-convex Functions 1

Determinants Chapter 3

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Thomas Whitham Sixth Form

Lecture 1: Introduction to integration theory and bounded variation

Transcription:

Applied Mthetic 0 9-96 doi:0.436/.0.079 Pulihed Online Octoer 0 (http://www.scirp.org/journl/) Eitence nd Uniquene of Solution for Frctionl Order Integro-Differentil Eqution with Non-Locl nd Glol Boundry Condition Atrct Mehrn Ftei Nihn Aliev Sedght Shhord Deprtent of Mthetic Bku Stte Univerity Bku Azern Deprtent of Applied Mthetic Univerity of Triz Triz Irn E-il: ftei.ehrn@yhoo.co hhord@trizu.c.ir Received Ferury 4 0; revied Septeer 5 0; ccepted Septeer 3 0 In thi pper we prove n iportnt eitence nd uniquene theore for frctionl order Fredhol Volterr integro-differentil eqution with non-locl nd glol oundry condition y converting it to the correponding well known Fredhol integrl eqution of econd kind. The conidered prole in thi pper h een olved lredy nuericlly in []. Keyword: Frctionl Order Integro-Differentil Eqution Non-Locl Boundry Condition Fundentl Solution. Introduction Let conider prole under oundry condition contining non-locl nd glol ter for frctionl order integro-differentil eqution q D y f K t y t t K t y t t d d q j j y y Hi t y t t di j= i d () () q 0 f K t K Hi t i = t nd re continuou rel-vlued function i nd d i i = j = re rel contnt nd oundry condition () re linerly independent.. Eitence nd Uniquene of Solution Theore. Let the function f K j t j = nd Hi t i = re continuou i nd d i. = re rel contnt the oundry condition () re linerly independent nd condition (5) i tified. Then the oundry vlue prole ()-() h unique olution. Proof: Acting in Eqution () y frctionl order derivtive opertor D [] we q get ince q q q q q D D y D f D K t y t t D K t y t t q q D D y = D y d d then we get the eqution (3) D y F M t y t d t M t y t d t Copyright 0 SciRe.

M. FATEMI ET AL. 93 q q d F D f = f d d q! q d M t K t d d t q! q d M t K td. d q! Now we write Eqution (3) in the generl fro D y G y (4) (3.) nd ccept tht G y i known then the fundentl olution (ee [3]) i in the for! Y. (5) > 0 < i Heviide unit function. Now we try to get oe ic reltion. The firt of thee reltion i Lgrnge forul. We ultiply oth ide of Eqution (3) y fundentl olution (5) nd integrte the otined epreion on (ee [45]) to get D y Y d G y Y d (7) G y F M t y t d t M t y t dt (7.) integrting y prt on the left hnd ide of epreion (7) nd tking into ccount tht (5) i fundentl olution of (3.) give the firt ic reltion in the for (6) y n D y Y G yyd =0 = y. Hence the firt epreion for the necery condition re otined in the for y D y Y G y Y d =0 y D y Y G yy d =0 (8) (9) It i ey to ee tht the econd epreion in (9) turn into n identity. Indeed it i een fro (5)-(6) the integrl t the right ide of the econd condition contin the vlue of the function which i zero for =. For = the the ution in the econd epreion contin the Heviide function which i zero for =0. Finlly the firt und contin poitive degree of for =0 thee ter ecoe zero t = =. Here for = the the epreion of fundentl olution for = yield the Heviide function. For = = thi ecoe therefore the econd one of necery condition (9) turn into identity. Now we contruct the econd ic epreion to get the econd group of necery condition. For tht we ultiply oth ide of (3) y the derivtive of (5) nd integrte on [67]: D yy d G yy d. Integrting y prt on the left ide of the otined epreion nd tking into ccount (5) nd (6) we get the econd ic reltion follow: y D y Y G yy d ( ) (0) =0 = y nd o the econd group of the necery condition re otined Copyright 0 SciRe.

94 M. FATEMI ET AL. y D y Y G y Y d =0 y D yy GyY d. =0 () Siilr to the econd epreion of (9) we cn how tht the econd epreion of () turn into identity. If we continue thi proce in order to get the -th ic reltion we ultiply (3) the -th order derivtive of (5) nd integrte on to get: d D yy G y Y d. Here once integrting y prt on the left ide of the otined epreion give D y Y D yy d = G y Y d. Thu if we tke into ccount tht (5) i the fundentl olution the lt reltion (-th) will e follow: y D y Y G y Y d = ( ) y. () Therefore the lt group of necery condition will e in the for: y D yy G y Y d = y D yy G y Y d = (3) here ove the econd necery condition turn into identity. Now we join to the given linerly independent oundry condition (7) the necery condition in (9) () nd etc. (3) tht re not identitie nd write the yte of liner lgeric eqution otined with repect to the oundry vlue of the unknown function in the following wy. y y y y y y d H t y t d t y y y y y y d H tytd t y y y y Y y Y y y GyY d ( ) y( ) y y y y Y y y y GyY d y y y Y y = G y Y d (4) Copyright 0 SciRe.

M. FATEMI ET AL. 95 For olving the yte (4) y the Crer rule it i necery tht it ic deterinnt differ fro zero. Accept tht the following condition i tified 0 0 Y... Y 0 0 ( ) 0 0 Then fro yte (4) we get y d H t y t d t G y Y d = = k k y d d H t y t t G y Y d = = 0 k k k k (5) (6) ( p q) denote the cofctor of the eleent t the interection of p-th row nd q-th colun of the deterinnt. Clculte the following epreion: G y Y F M t y t t M t y t ty d ( ) d d d ( ) Then we get: nd o d d d d F Y Y M t y t t Y M t y t dt F Y d ytd ty M t d ytd ty M t d. G y Y d F M t y t d t (7) F F Y d (8) M t Y M t d Y M td Finlly coing ck to (8) we tke into ccount (6) nd (7) nd write the econd kind Fredhol type integrl eqution [8] for which the oundry vlue prole ()-() i reduced to: y A B t y t d t (9) 0 k 0 k k dk k A Y Y F k dk k Y Y F k FY d 0 k 0 k k (0) Copyright 0 SciRe.

96 M. FATEMI ET AL. 0 k 0 k 0 k 0 k Y M t d Y M t d. k = dk k B t Y Hk t Y M k t k ( ) dk k Y Hk t Y M k t () By the hypothei of theore on the function f K j t j = nd Hi t i = the integrl Eqution (9) h unique olution nd o in ll conducted opertion we cn coe ck nd we conclude tht the olution of (9) i the unique olution of oundry vlue prole ()-(). 3. Reference [] D. Nzri nd S. Shhord Appliction of Frctionl Differentil Trnfor Method to the Frctionl Order Integro-Differentil Eqution with Nonlocl Boundry Condition Journl of Coputtionl nd Applied Mthetic Vol. 34 No. 3 00 pp. 883-89. doi:0.06/j.c.00.0.053 [] S. G. Sko A. A. Kil nd O. I. Mrichev Frctionl Integrl nd Derivtive Theory nd Appliction Cordon nd Brech Yverdon 993. [3] C. J. Trnter Integrl Trnfor in Mtheticl Phyic Methuen London nd New York 949. [4] V. S. Vldiirov Eqution of Mtheticl Phyic Mir Puliction Mocow 984. [5] G. E. Shilov Mtheticl Anlyi. The Second Specil Coure Nuk Mocow 965. [6] S. M. Hoeini nd N. A. Aliev Sufficient Condition for the Reduction of BVP for PDE with Non-Locl nd Glol Boundry Condition to Fredhol Integrl Eqution (on Rectngulr Doin) Applied Mthetic nd Coputtion Vol. 47 No. 3 004 pp. 669-685. [7] F. Bhri N. Aliev nd S. M. Hoeini A Method for the Reduction of Four Ienionl Mied Prole with Generl Boundry Condition to Syte of Second Kind Fredhol Integrl Eqution Itlin Journl of Pure nd Applied Mthetic No. 7 005 pp. 9-04. [8] N. Aliev nd M. Jhnhehi Solution of Poioin Eqution with Glol Locl nd Non-Locl Boundry Condition Interntionl Journl of Mtheticl Eduction in Science nd Technology Vol. 33 No. 00 pp. 4-47. doi:0.080/0007390009755 Copyright 0 SciRe.