Matrix. Definition 1... a1 ... (i) where a. are real numbers. for i 1, 2,, m and j = 1, 2,, n (iii) A is called a square matrix if m n.

Similar documents
1 4 6 is symmetric 3 SPECIAL MATRICES 3.1 SYMMETRIC MATRICES. Defn: A matrix A is symmetric if and only if A = A, i.e., a ij =a ji i, j. Example 3.1.

CHAPTER 5 Vectors and Vector Space

Chapter Unary Matrix Operations

Exercise # 2.1 3, 7, , 3, , -9, 1, Solution: natural numbers are 3, , -9, 1, 2.5, 3, , , -9, 1, 2 2.5, 3, , -9, 1, , -9, 1, 2.

ME 501A Seminar in Engineering Analysis Page 1

Chapter Gauss-Seidel Method

Chapter 1 Vector Spaces

FREE Download Study Package from website: &

Available online through

Numerical Analysis Topic 4: Least Squares Curve Fitting

Section 2:00 ~ 2:50 pm Thursday in Maryland 202 Sep. 29, 2005

The z-transform. LTI System description. Prof. Siripong Potisuk

ECE 102 Engineering Computation

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

ES240 Solid Mechanics Z. Suo. Principal stress. . Write in the matrix notion, and we have

MATRIX AND VECTOR NORMS

The linear system. The problem: solve

Dynamics of Structures

Introduction to Matrix Algebra

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

Chapter 1 Counting Methods

Advanced Algorithmic Problem Solving Le 3 Arithmetic. Fredrik Heintz Dept of Computer and Information Science Linköping University

Preliminary Examinations: Upper V Mathematics Paper 1

The Z-Transform in DSP Lecture Andreas Spanias

Sequences and summations

Stats & Summary

Lecture 3-4 Solutions of System of Linear Equations

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

PROBLEM SET #4 SOLUTIONS by Robert A. DiStasio Jr.

CHAPTER 4: DETERMINANTS

POWERS OF COMPLEX PERSYMMETRIC ANTI-TRIDIAGONAL MATRICES WITH CONSTANT ANTI-DIAGONALS

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Neville Robbins Mathematics Department, San Francisco State University, San Francisco, CA (Submitted August 2002-Final Revision December 2002)

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

MATH 104: INTRODUCTORY ANALYSIS SPRING 2008/09 PROBLEM SET 10 SOLUTIONS. f m. and. f m = 0. and x i = a + i. a + i. a + n 2. n(n + 1) = a(b a) +

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

Mathematically, integration is just finding the area under a curve from one point to another. It is b

Chapter Simpson s 1/3 Rule of Integration. ( x)

Level-2 BLAS. Matrix-Vector operations with O(n 2 ) operations (sequentially) BLAS-Notation: S --- single precision G E general matrix M V --- vector

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

Chapter 4 Multiple Random Variables

ρ < 1 be five real numbers. The

( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ) = ( ) ( ) + ( ) ( ) = ( ( )) ( ) + ( ( )) ( ) Review. Second Derivatives for f : y R. Let A be an m n matrix.

Analyzing Control Structures

18.413: Error Correcting Codes Lab March 2, Lecture 8

MATH 371 Homework assignment 1 August 29, 2013

PAIR OF STRAIGHT LINES. will satisfy L1 L2 0, and thus L1 L. 0 represent? It is obvious that any point lying on L 1

ICS141: Discrete Mathematics for Computer Science I

Chapter 9 Jordan Block Matrices

CHAPTER 4 RADICAL EXPRESSIONS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

DATA FITTING. Intensive Computation 2013/2014. Annalisa Massini

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

INTERPOLATION(2) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

Non-uniform Turán-type problems

Math 10 Discrete Mathematics

Exercises for Square-Congruence Modulo n ver 11

Design maintenanceand reliability of engineering systems: a probability based approach

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

Section 2.2. Matrix Multiplication

Problem Set 4 Solutions

Chapter 2 Intro to Math Techniques for Quantum Mechanics

Matrices. Elementary Matrix Theory. Definition of a Matrix. Matrix Elements:

Modeling uncertainty using probabilities

Statistics for Financial Engineering Session 1: Linear Algebra Review March 18 th, 2006

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

Lecture 3: Review of Linear Algebra and MATLAB

Fibonacci and Lucas Numbers as Tridiagonal Matrix Determinants

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

Numerical Differentiation and Integration

SUM PROPERTIES FOR THE K-LUCAS NUMBERS WITH ARITHMETIC INDEXES

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

MTH 146 Class 7 Notes

2. Elementary Linear Algebra Problems

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

Lecture 3 Probability review (cont d)

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11:

1 Onto functions and bijections Applications to Counting

The total number of permutations of S is n!. We denote the set of all permutations of S by

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

(This summarizes what you basically need to know about joint distributions in this course.)

Optimality of Strategies for Collapsing Expanded Random Variables In a Simple Random Sample Ed Stanek

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Maps on Triangular Matrix Algebras

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

Linear Open Loop Systems

MA 524 Homework 6 Solutions

Johns Hopkins University Department of Biostatistics Math Review for Introductory Courses

Analele Universităţii din Oradea, Fascicula: Protecţia Mediului, Vol. XIII, 2008

The Algebraic Least Squares Fitting Of Ellipses

Downloaded from

α1 α2 Simplex and Rectangle Elements Multi-index Notation of polynomials of degree Definition: The set P k will be the set of all functions:

All-Pairs shortest paths via fast matrix multiplication

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

Rendering Equation. Linear equation Spatial homogeneous Both ray tracing and radiosity can be considered special case of this general eq.

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Mu Sequences/Series Solutions National Convention 2014

Transcription:

Mtrx Defto () s lled order of m mtrx, umer of rows ( 橫行 ) umer of olums ( 直列 ) m m m where j re rel umers () B j j for,,, m d j =,,, () s lled squre mtrx f m (v) s lled zero mtrx f (v) s lled detty mtrx f () s squre mtrx j for j () j for j Property (ddto, sutrto d slr multplto) d B re two mtres of order m d k s slr () B j j m m k k () k kj km Property () () ( B C) ( B) C B B () k( B) k kb x y z w Exerse 4 Gve tht, fd the vlues of x, y, w d z [,,, ] x y z w 5 Mtrx

Property 5 (Mtrx multplto d rspose) () Let M m p d B M p d j =,,,, the B M m d Bj p k k kj for,,, m () Gve M m p, the M pm d j j Property 6 () ( C) E ( CE) () ( B) C C BC () ( C D) C D (v) (v) B B (v) where s rel slr (v) ( C) C (v) I geerl, B B e B B B, B ( B)( B) (x) B does t mply or B (x) B does t mply B I 4 Exerse 7 Let, B, C, D d E Evlute () ( B) C 4 9 () ( B C) B 57 6 () (C) 9 (d) ( ) B D EE 8 7 Exerse 8 () Fd mtrx suh tht 7 7 () If x, fd the vlues of x d [, ] x Mtrx

Mtrx Exerse 9 Let 4 () Evlute I 5 4 () Hee, or otherwse, evlute 4 5 6 5 48 4 5 44 9 () Hee, or otherwse, fd mtrx B suh tht I B B 8 6 Exerse Let () Fd d, () Usg () or otherwse, evlute 8 64 649 8 Exerse Let, B where () Prove tht for ll postve teger, ) ( () Hee, or otherwse, evlute for y postve teger, () B) ( ) )( ( () B ) ( ] ) )[( ( ) ( Defto () s lled symmetr f () s lled skew-symmetr f

Defto (Determts) () d d () d e f = e + fg + dh eg d fh g h or you use the method of oftor: Property 4 () () If two rows or olums re proportol, the, e k k k g h () Let B e mtrx oted from y terhgg y rows (olums), the det( B) det( ), e d g e h f g d h e f (v) sd g r rse rh sf rs d g e h f (v) d g k e kd h kg f d g e h f or d k g e k h f k d g e h f (v) det( B) det( )det( B) (v) det( ) det( ) Exerse 5 x () If 8 x, fd the vlues of x [, 6] () Ftorze () [ ] () x y x y y x y x x y x y [ ( x y)( xy x y )] Mtrx 4

Exerse 6 Prove tht ( )( )( ) Defto 7 (Iverse) () squre mtrx of order s sd to e o sgulr or vertle ff there exsts squre mtrx B suh tht B B I he mtrx B s lled the verse of d deoted y () squre mtrx s sgulr or NO vertle ff does t exst Property 8 () Iverse of vertle mtrx s uque () If det( ), the s o sgulr d dj ( ) trspose of the oftor of, where dj () s the djot of whh s the heorem 9 () squre mtrx s o sgulr ff () squre mtrx s sgulr ff Exerse Property Fd the verse of 5 4 4 8 7 4 Gve s squre d vertle () If B, the B () If B C, the B C () s lso vertle d If d B re o-sgulr, the ( Exerse Let B ) B 5 () Evlute 8 4I () Hee, or otherwse, fd (6 mrks) [96] 8 4 Exerse Let d P 5 () Fd P P () Fd, where s postve teger (6 mrks) [94] Mtrx 5

4 Exerse 4 Let, B, C B B d let e postve teger 4 () Fd C d C, () Show tht C pc qi for some tegers p d q Exerse 5 () For y dgol mtrx D,, R Prove tht D for ll postve teger () If, fd mtrx B of the form so tht B B s dgol mtrx 4 h k / () Hee, express, where s postve teger, the form of mtrx 4 / Exerse 6 () Show tht f s mtrx suh tht, the det = 74 () Gve tht B 67, use (), or otherwse, 74 67 to show det B I Hee dedue tht det B 4 I (7 mrks) [9] Exerse 7 Let P e o sgulr rel mtrx d Q, where d re two dstt rel umers Defe M P QP d deote the detty mtrx y I () Fd rel umers d, terms of d, suh tht M () Prove tht det( M I M I) ( ) (6 mrks) [7] Mtrx 6

Mtrx 7 Exerse 8 () 8, ()() () 8 9 8 Exerse 9 () () p, q (d) 454 4 79

Exerse ()() 6 I, 7 6 4 () -, I () or 8 Exerse () 6 76 6 4 4 () (d), Mtrx 8

Exerse ()() p, q (v) [84] he mtrx stsfes the odto () polyoml f ( x) s defed y f ( x) det xi x x x Wrte dow the polyoml f ( x) wth oeffets expressed terms of, d Evlute the mtrx f( ) I () Usg (), or otherwse, express the form I, where d re rel umers Hee fd 9 for [86] Let M e the set of rel mtres For y U M, let det U d U deote respetvely the determt d trspose of U Let F { U M : U U d detu } () () If U F, show tht detu () Show tht U F f d oly f U for some rel, suh tht w x () Let B e M y z p () Show tht f there exst U F d p, q R suh tht UBU, q the B B, e, x y () Show tht f s B B, the there exstsu F suh tht UBU t for some s, t R Mtrx 9

[87] Let M e the set of rel mtres d I e the detty mtrx of order () For y M, show tht f = I, the det = () Let B M suh tht B + B + I = () Show tht B = I d B ( B I ) () Smplfy I B B B () If B, show tht d d () Fd mtrx M M wth tegrl etres suh tht M I d M I [89] Let, B () Fd B d B, where B deotes the trspose of B () For eh of the mtres B d B verse f t exsts, determe whether t s vertle, d fd ts [5 mrks] [9] () Let X d Y e two squre mtres suh tht XY YX () X Y X XY Y, () X Y r C r X r Y r for =, 4, 5, Prove tht (Note : For y squre mtrx, defe I ) [ mrks] () By usg ()() d osderg 4, or otherwse, fd 4 [4 mrks] () If X d Y re squre mtres, () prove tht X Y X XY Y mples XY YX ; () prove tht X Y X X Y XY Y does NO mply XY YX (Ht : Cosder prtulr X d Y, eg X,Y ) [8 mrks] Mtrx

[9] Ftorze the determt [4 mrks] os s [9] () Let Prove y mthemtl duto tht s os os s s os for =,, () Let M :, R d e postve teger () For y X, Y M, show tht (I) XY M, (II) XY YX, (III) If X, the X exsts d X M () For y X M, show tht there exst r d R suh tht os s X r s os Hee fd ll X M suh tht X () If Y, B M d Y B, show tht there exsts X M suh tht X d Y BX Hee fd ll Y M suh tht Y [ mrks] [ mrks] [9] () Show tht f s mtrx suh tht, the det = () 74 Gve tht B 67, 74 67 use (), or otherwse, to show det B I Hee dedue tht det B 4 I [7 mrks] 8 4 [94] Let d P 5 () Fd P P () Fd, where s postve teger [6 mrks] Mtrx

[94] () If, d re the roots of x pxq, fd u equto whose roots re (), d Solve the equto x x x Hee, or otherwse, solve the equto x 8x 6x 9 [6 mrks] [95] () Let Prove tht, where, R d for ll postve tegers () Hee, or otherwse, evlute 95 [6 mrks] [96] Let 5 () Evlute 8 4I () Hee, or otherwse, fd [6 mrks] [96] () Solve the equto det (*) [ mrks] () Let, ( < ) e the roots of (*) Fd two o-zero vetors (x, y ) d (x, y ) suh tht =, Show tht (x, y ) d (x, y ) re lerly depedet Let x P y x y Fd x y x y P d evlute P P [9 mrks] () Evlute 996 [ mrks] Mtrx

[97] () Let e o-sgulr mtrx Show tht x det xi det x I () Let = 4 7 8 det () Show tht 4 s root of det xi () Solve det xi d hee fd the other roots surd form [7 mrks] os s [97] () () Let S = : R s os Show tht for y mtres d B S, B s lso S () Let () = Prove tht os s s os for y postve teger [4 mrks] () Let M = where, R d () Show tht M = k() for some rel umers k d Express k, os d s terms of d () If, prove tht there exsts postve teger suh tht M s dgol p (e of the form ) f d oly f q t s rtol () If =, fd ll postve tegers suh tht M s dgol [ mrks] [98] Let where,,, d R, d det = d () Show tht for some k R ( mrks) k k () Fd P the form of suh tht r P for some, R s If + d =, fd Q the form of suh tht PP Q for some R (5 mrks) 7 () Fd S suh tht S S for some R 6 4 Hee, or otherwse, evlute 6 7 4 where s postve teger (7 mrks) Mtrx

[99] () Let d B e two squre mtres of the sme order If B B, show tht ( B) B for y postve teger (4 mrks) p q () Let where, re ot oth zero If B, r s show tht B B f d oly f p r d q s (4 mrks) x y () Let C where x, y, z re o-zero d dstt z Fd o-zero mtres D d E suh tht C = D + E d DE = ED = ( mrks) (d) Evlute 5 99 (4 mrks) [] Let M = where Show y duto tht M [ ( ) ] [ ( )] for ll postve tegers Hee or otherwse, evlute (5 mrks) 4 [] () Let e mtrx suh tht I, where I s the detty mtrx () Prove tht hs verse, d fd terms of 4 () Prove tht I () Prove tht I (v) Fd vertle mtrx B suh tht () Let X B B BI (6 mrks) () Usg ()() or otherwse, fd X () Let e postve teger Fd X () Fd two mtres Y d Z, other th X, suh tht Y Y Y I, Z Z Z I (9 mrks) Mtrx 4

[] () If det, fd the two vlues of ( mrks) () Let d e vlues oted (), where < Fd d suh tht os os,, s, s Let os os P Evlute P, where s postve teger s s Prove tht P P s mtrx of the form d (8 mrks) d () Evlute, where s postve teger (5 mrks) k k [4] Let =, where,, k R wth k k Defe X ( I) d Y ( I), where I s the detfy mtrx () Evlute XY, YX, X + Y, X d Y (4 mrks) () Prove tht = X + Y for ll postve tegers (4 mrks) () Evlute 5 4 4 (4 mrks) (d) If d re o-zero rel umers, guess expresso for - terms of,, X d Y, d verfy t ( mrks) m m [6] Let M where m m m () Evlute M ( mrk) () Let X e o zero rel mtrx suh tht MX XM d () Prove tht d d () Prove tht X s o sgulr mtrx () Suppose tht X 6X () Fd X () If d ( M kx ) M, express k terms of m ( mrks) () Usg the result of ()()(), fd two rel mtres P d Q, other th M d M, 4 4 4 suh tht P Q M (4 mrks) Mtrx 5

p q [5] () Let M, where p, q, r, s R r s () Suppose det M Prove tht M ( p s) M for y postve teger () Suppose qr Let d e the roots of the qudrt equto x ( p s) x det M Deote the detty mtrx y I () Prove tht d re two dstt rel umers () Prove tht M ( ) M I () Defe M I d B M I Prove tht B B d det det B Fd rel umers d, terms of d, suh tht M B ( mrks) () Evlute 4, where s postve teger Cddtes my use the ft, wthout proof, tht f X d Y re mtres stsfyg XY YX, the ( X Y ) X Y for y postve teger (4 mrks) [7] Let P e o-sgulr rel mtrx d Q, where d re two dstt rel umers Defe M P QP d deote the detty mtrx y I () Fd rel umers d, terms of d, suh tht M () Prove tht det( M I M I) ( ) (6 mrks) [8] Deote the Idetty mtrx y I p q () Let M, where p, q d r re rel umers r p () Evlute M () Let I e rel umer Prove tht f p qr, the for y postve teger, ( s ) ( s ) ( s ) ( s ) (7 mrks) M si M I 6 () Let () Express the form I, where,, d re rel umers 8 () Evlute () Usg the result of ()(), or otherwse, evlute 8 (8 mrks) Mtrx 6

[9] Let M os s () Suppose tht M r, where r d Fd r d ( mrks) s os p () rel mtrx of the form s lled dgol mtrx Fd ll postve tegers q suh tht M s dgol mtrx, d evlute M for suh vlues of ( mrks) () Let e rel mtrx suh tht M M Prove tht 9 8 7 9 ( M )( M M M ) M ( mrks) (d) Deote the detty mtrx y I Is I M sgulr mtrx? Expl your swer ( mrks) 8 7 6 9 (e) Evlute M M M M (6 mrks) 4 [] 8 () Let e rel mtrx d 4 () Prove tht P s o-sgulr mtrx () Evlute P P () Let () For y postve teger, fd d d d suh tht 4 B For y postve teger, fd P, where P P d 5 B B B B d (9 mrks) (6 mrks) Mtrx 7