Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Similar documents
Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

6.012 Electronic Devices and Circuits Spring 2005

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

Lecture 3: CMOS Transistor Theory

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

Practice 3: Semiconductors

ECE315 / ECE515 Lecture-2 Date:

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE5311- Digital IC Design

MOSFET: Introduction

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Figure 1: MOSFET symbols.

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Introduction and Background

ECE 546 Lecture 11 MOS Amplifiers

ECE 342 Electronic Circuits. 3. MOS Transistors

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Device Models (PN Diode, MOSFET )

MOSFET Capacitance Model

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

EE105 - Fall 2005 Microelectronic Devices and Circuits

MOS Transistor Properties Review

MOSFET Physics: The Long Channel Approximation

Chapter 4 Field-Effect Transistors

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

The Devices. Devices

Device Models (PN Diode, MOSFET )

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Conduction in Semiconductors -Review

CMOS Analog Circuits

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

MOS Transistor I-V Characteristics and Parasitics

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE 435. Lecture 37. Parasitic Capacitances in MOS Devices. String DAC Parasitic Capacitances

Lecture 16 The pn Junction Diode (III)

VLSI Design and Simulation

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

ECE 497 JS Lecture - 12 Device Technologies

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

ECE 546 Lecture 10 MOS Transistors

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Charge-Storage Elements: Base-Charging Capacitance C b

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

ECE321 Electronics I

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

The Devices: MOS Transistors

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

N Channel MOSFET level 3

Lecture 04 Review of MOSFET

The Gradual Channel Approximation for the MOSFET:

ELEC 3908, Physical Electronics, Lecture 27. MOSFET Scaling and Velocity Saturation

Lecture 4: CMOS Transistor Theory

MOS Transistor Theory

MOS Transistor Theory

Microelectronics Main CMOS design rules & basic circuits

Lecture 12: MOSFET Devices

Lecture 5: CMOS Transistor Theory

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 11: MOS Transistor

Metal-oxide-semiconductor field effect transistors (2 lectures)

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Microelectronics Part 1: Main CMOS circuits design rules

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Integrated Circuits & Systems

Practice 7: CMOS Capacitance

Lecture 23 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 4, 2007

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Transcription:

Lecture 1 MOSFET (III) MOSFET Equivalent Circuit Models Outline Lowfrequency smallsignal equivalent circuit model Highfrequency smallsignal equivalent circuit model Reading Assignment: Howe and Sodini; Chapter 4, Sections 4.54.6 6.12 Spring 29 Lecture 1 1

Large Signal Model for NMOS Transistor Regimes of operation: ID linear VDSsat=VGSVT saturation I D V DS VGS V GS V BS VGS=VT Cutoff cutoff VDS I D = Linear / Triode: W I D = L μ nc ox V GS V DS V T 2 V DS Saturation I D = I Dsat = W 2L μ nc ox V GS V T Effect of back bias [ ] 2 [ 1 V DS ] V T (V BS ) = V To [ 2 p V BS 2 ] p 6.12 Spring 29 Lecture 1 2

Smallsignal device modeling In many applications, we are only interested in the response of the device to a smallsignal applied on top of a bias. I D v ds v gs V GS v bs V BS V DS Key Points: Smallsignal is small response of nonlinear components becomes linear Since response is linear, lots of linear circuit techniques such as superposition can be used to determine the circuit response. Notation: i D = I D Total = DC Small Signal 6.12 Spring 29 Lecture 1 3

Mathematically: i D (V GS, V DS, V BS ; v gs, v ds, v bs ) I D ( V GS, V DS,V BS ) (v gs, v ds, v bs ) With linear on smallsignal drives: Define: = g m v gs g o v ds g mb v bs g m transconductance [S] g o output or drain conductance [S] g mb backgate transconductance [S] Approach to computing g m, g o, and g mb. g m i D v GS Q g o i D v DS Q g mb i D v BS Q Q [v GS = V GS, v DS = V DS, v BS = V BS ] 6.12 Spring 29 Lecture 1 4

Transconductance In saturation regime: i D = W 2L μ nc ox [ v GS V T ] 2 [ 1 V DS ] Then (neglecting channel length modulation) the transconductance is: g m = i D W v GS Q L μ n C ox ( V GS V T) Rewrite in terms of I D : g m = 2 W L μ n C ox I D gm saturation ID 6.12 Spring 29 Lecture 1 5

Transconductance (contd.) Equivalent circuit model representation of g m : G D v gs gm v gs S B i D (μa) 4 I D 3 = g m v gs V GS v gs I D 2 Q V GS 1 V DS 1 2 3 4 5 v DS (V) 6.12 Spring 29 Lecture 1 6

Output conductance In saturation regime: W 2 i D = 2L μ n C ox [v GS V T ] [1 v DS ] Then: W 2 i g D o = = μ n C ox (V GS V T ) I 2L D v DS Q Output resistance is the inverse of output conductance: Remember also: Hence: 1 1 r o = = g o I D 1 L r L o 6.12 Spring 29 Lecture 1 7

Output conductance (contd.) Equivalent circuit model representation of g o : G D S v gs r o i D (μa) B 4 I D I D 3 2 = g o v ds V GS, V BS Q 1 V DS v ds V DS v ds 1 2 3 4 5 V DS (V) 6.12 Spring 29 Lecture 1 8

Backgate transconductance In saturation regime (neglect channel length modulation): Then: Since: g mb = i D W 2L μ nc ox [ v GS V T ] 2 i D = W v BS Q L μ n C ox ( V GS V T) V T v BS Q V T (v BS ) = V To [ 2 p v BS 2 ] p Then : V T v BS Q = 2 2 p V BS Hence: g mb = g m 2 2 p V BS 6.12 Spring 29 Lecture 1 9

Backgate transconductance (contd.) Equivalent circuit representation of g mb : G D v gs gmb v bs S i D (μa) 4 B v bs I D 3 = g mb v bs V GS, V BS v bs I D 2 Q V GS, V BS 1 V DS 1 2 3 4 5 V DS (V) 6.12 Spring 29 Lecture 1 1

V DS V GS Metal interconnect to gate n polysilicon gate V BS = n source y n drain Q N (y) X d (y) x ptype Metal interconnect to bulk Figure by MIT OpenCourseWare. 6.12 Spring 29 Lecture 1

6Highfrequency smallsignal equivalent circuit model Need to add capacitances. In saturation: fringe electric field lines \... gate source... =',b, n... 4k ~N(%s) 4k1% depletion] overlapl overlap LD region I Cgs = channel charge overlap capacitance, C,, Cg, =overlap capacitance, C,, CSb= sourcejunction depletion capacitance (sidewall) C, = drain junction depletion capacitance (sidewall) ONLY Channel Charge Capacitance is intrinsic to device operation. All others are parasitic. 6.12 Spring 29 Lecture 1

Inversion layer charge in saturation q N (v GS ) = W L Q N (y)dy = W Q N (v C ) dy dv C v GS V T dv C Note that q N is total inversion charge in the channel & v C (y) is the channel voltage. But: Then: dv C dy = i D W μ n Q N (v C ) V GS V T [ ] 2 q N (v GS ) = W 2 μ n Q N (v C ) i D dv C Remember: Q N (v C ) = C [ ox v GS v C (y) V ] T Then: v GS V T [ ] 2 q N (v GS ) = W 2 μ n C 2 ox v GS v C (y) V T i D dv C 6.12 Spring 29 Lecture 1 13

Inversion layer charge in saturation (contd.) Do integral, substitute i D in saturation and get: Gate charge: q N (v GS ) = 2 3 WLC ox ( v GS V T) q G (v GS ) = q N (v GS ) Q B,max Intrinsic gatetosource capacitance: C gs,i = dq G dv GS = 2 3 WLC ox Must add overlap capacitance: C gs = 2 3 WLC ox WC ov Gatetodrain capacitance only overlap capacitance: C gd = WC ov 6.12 Spring 29 Lecture 1 14

ther capacitances SourcetoBulk capacitance:... csb = WLdvf cj (2~di&f w)cjsw where C :Bottom Wall at Vm (F 1em2) Cjsw DraintoBulk capacitance: Side Wall at VSB(F1cm) Cdb = WLdiffj (2~dijfw)cjsw where Cj :Bottom Wall at VDB(FI cm2) Cjsw Side Wall at VDB(F1cm) GatetoBulk capacitance: 6.12 Spring 29 Lecture 1.W

What did we learn today? Summary of Key Concepts Highfrequency smallsignal equivalent circuit model of MOSFET G C gd D S B v gs Cgs C gb v bs g m v gs g mb v bs r o C sb C db In saturation: g m r o L I D W L I D C gs WLC ox 6.12 Spring 29 Lecture 1 16

MIT OpenCourseWare http://ocw.mit.edu 6.12 Microelectronic Devices and Circuits Spring 29 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.