A SHORT PROOF OF INCREASED PARABOLIC REGULARITY

Similar documents
Proof by bootstrapping

LIFE SPAN OF BLOW-UP SOLUTIONS FOR HIGHER-ORDER SEMILINEAR PARABOLIC EQUATIONS

ON THE GLOBAL EXISTENCE OF A CROSS-DIFFUSION SYSTEM. Yuan Lou. Wei-Ming Ni. Yaping Wu

MULTIPLE POSITIVE SOLUTIONS FOR KIRCHHOFF PROBLEMS WITH SIGN-CHANGING POTENTIAL

UPPER AND LOWER SOLUTIONS FOR A HOMOGENEOUS DIRICHLET PROBLEM WITH NONLINEAR DIFFUSION AND THE PRINCIPLE OF LINEARIZED STABILITY

MIXED BOUNDARY-VALUE PROBLEMS FOR QUANTUM HYDRODYNAMIC MODELS WITH SEMICONDUCTORS IN THERMAL EQUILIBRIUM

A PROPERTY OF SOBOLEV SPACES ON COMPLETE RIEMANNIAN MANIFOLDS

SELF-ADJOINTNESS OF SCHRÖDINGER-TYPE OPERATORS WITH SINGULAR POTENTIALS ON MANIFOLDS OF BOUNDED GEOMETRY

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSION SYSTEM WITH NONLOCAL SOURCES

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

Remarks on the Maximum Principle for Parabolic-Type PDEs

ON THE SOLUTION OF DIFFERENTIAL EQUATIONS WITH DELAYED AND ADVANCED ARGUMENTS

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY

MULTIPLE SOLUTIONS FOR THE p-laplace EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

CONVERGENCE OF EXTERIOR SOLUTIONS TO RADIAL CAUCHY SOLUTIONS FOR 2 t U c 2 U = 0

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

PARTIAL DIFFERENTIAL EQUATIONS. Lecturer: D.M.A. Stuart MT 2007

A Perron-type theorem on the principal eigenvalue of nonsymmetric elliptic operators

ALEKSANDROV-TYPE ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION

Memoirs on Differential Equations and Mathematical Physics

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY

arxiv:math/ v1 [math.ap] 28 Oct 2005

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

EXISTENCE OF SOLUTIONS TO BURGERS EQUATIONS IN DOMAINS THAT CAN BE TRANSFORMED INTO RECTANGLES

Parameter Dependent Quasi-Linear Parabolic Equations

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

Wellposedness and inhomogeneous equations

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

ASYMPTOTIC THEORY FOR WEAKLY NON-LINEAR WAVE EQUATIONS IN SEMI-INFINITE DOMAINS

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS

Entropy-dissipation methods I: Fokker-Planck equations

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

GENERATORS WITH INTERIOR DEGENERACY ON SPACES OF L 2 TYPE

A NOTE ON THE LADYŽENSKAJA-BABUŠKA-BREZZI CONDITION

CONSEQUENCES OF TALENTI S INEQUALITY BECOMING EQUALITY. 1. Introduction

Finite Differences for Differential Equations 28 PART II. Finite Difference Methods for Differential Equations

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N.

AN EXTENSION OF THE LAX-MILGRAM THEOREM AND ITS APPLICATION TO FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE AND UNIQUENESS OF SOLUTIONS CAUCHY PROBLEM FOR NONLINEAR INFINITE SYSTEMS OF PARABOLIC DIFFERENTIAL-FUNCTIONAL EQUATIONS

Dissipative quasi-geostrophic equations with L p data

The heat equation in time dependent domains with Neumann boundary conditions

A note on W 1,p estimates for quasilinear parabolic equations

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES

A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

ELLIPTIC EQUATIONS WITH MEASURE DATA IN ORLICZ SPACES

Downloaded 08/07/18 to Redistribution subject to SIAM license or copyright; see

ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS EXERCISES I (HARMONIC FUNCTIONS)

Energy transfer model and large periodic boundary value problem for the quintic NLS

BIHARMONIC WAVE MAPS INTO SPHERES

SOLUTION OF AN INITIAL-VALUE PROBLEM FOR PARABOLIC EQUATIONS VIA MONOTONE OPERATOR METHODS

SUBELLIPTIC CORDES ESTIMATES

hal , version 1-22 Nov 2009

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

Sobolev spaces. May 18

HARDY INEQUALITIES WITH BOUNDARY TERMS. x 2 dx u 2 dx. (1.2) u 2 = u 2 dx.

EXISTENCE OF POSITIVE SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS

MEAN VALUE THEOREMS FOR SOME LINEAR INTEGRAL OPERATORS

Asymptotic Convergence of the Steepest Descent Method for the Exponential Penalty in Linear Programming

EXISTENCE, UNIQUENESS AND QUENCHING OF THE SOLUTION FOR A NONLOCAL DEGENERATE SEMILINEAR PARABOLIC PROBLEM

Some lecture notes for Math 6050E: PDEs, Fall 2016

MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN

Introduction. Christophe Prange. February 9, This set of lectures is motivated by the following kind of phenomena:

Wentzell Boundary Conditions in the Nonsymmetric Case

NONLINEAR DIFFERENTIAL INEQUALITY. 1. Introduction. In this paper the following nonlinear differential inequality

SHARP BOUNDARY TRACE INEQUALITIES. 1. Introduction

Analysis of a Chemotaxis Model for Multi-Species Host-Parasitoid Interactions

Computations Under Time Constraints: Algorithms Developed for Fuzzy Computations can Help

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE PROBLEM FOR AN INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS

GROWTH OF SOLUTIONS TO HIGHER ORDER LINEAR HOMOGENEOUS DIFFERENTIAL EQUATIONS IN ANGULAR DOMAINS

An L Bound for the Neumann Problem of the Poisson Equations

SOLVABILITY OF MULTIPOINT DIFFERENTIAL OPERATORS OF FIRST ORDER

ABOUT SOME TYPES OF BOUNDARY VALUE PROBLEMS WITH INTERFACES

GORDON TYPE THEOREM FOR MEASURE PERTURBATION

We denote the space of distributions on Ω by D ( Ω) 2.

and finally, any second order divergence form elliptic operator

HIGHER ORDER MULTI-TERM TIME-FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS INVOLVING CAPUTO-FABRIZIO DERIVATIVE

MAXIMUM PRINCIPLES FOR THE RELATIVISTIC HEAT EQUATION

GLOBAL ATTRACTOR FOR A SEMILINEAR PARABOLIC EQUATION INVOLVING GRUSHIN OPERATOR

SYNCHRONIZATION OF NONAUTONOMOUS DYNAMICAL SYSTEMS

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

A HYPERBOLIC PROBLEM WITH NONLINEAR SECOND-ORDER BOUNDARY DAMPING. G. G. Doronin, N. A. Lar kin, & A. J. Souza

arxiv: v1 [math.ap] 5 Nov 2018

ON SOME ELLIPTIC PROBLEMS IN UNBOUNDED DOMAINS

SYMMETRY IN REARRANGEMENT OPTIMIZATION PROBLEMS

ON CONTINUITY OF MEASURABLE COCYCLES

PDE Methods for Mean Field Games with Non-Separable Hamiltonian: Data in Sobolev Spaces (Continued) David Ambrose June 29, 2018

Kramers formula for chemical reactions in the context of Wasserstein gradient flows. Michael Herrmann. Mathematical Institute, University of Oxford

Transcription:

Electronic Journal of Differential Equations, Vol. 15 15, No. 5, pp. 1 9. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu A SHORT PROOF OF INCREASED PARABOLIC REGULARITY STEPHEN PANKAVICH, NICHOLAS MICHALOWSKI Abstract. We present a short proof of the increased regularity obtained by solutions to uniformly parabolic partial differential equations. Though this setting is fairly introductory, our new method of proof, which uses a priori estimates and an inductive method, can be extended to prove analogous results for problems with time-dependent coefficients, advection-diffusion or reaction diffusion equations, and nonlinear PDEs even when other tools, such as semigroup methods or the use of explicit fundamental solutions, are unavailable. 1. Introduction It is well-known that solutions of uniformly parabolic partial differential equations possess a smoothing property in time. That is, beginning with initial data which may fail to be even weakly differentiable, the solution becomes extremely smooth, gaining spatial derivatives at any later time t >. Though this property is well-established, such a result is not contained within many standard texts in PDEs [3, 4, 6, 7, 8, 13]. Of course, these works contain theorems demonstrating the regularity of solutions to initial value or initial-boundary value problems, but the same degree of regularity is assumed for the initial data as is demonstrated for the solution. Notable exceptions are [, Thm 1.1], in which a gain of regularity theorem is proved, specifically for the heat equation with initial data in L Ω using semigroup methods, and [1, Thm 6.6], in which the Steklov average is used to prove that solutions of general, uniformly parabolic equations possess two weak derivatives in L t,x. Even more concentrated works on the subject of parabolic PDEs, including [5] and the classical monograph [9], do not contain such results regarding increased regularity of solutions to these equations. We note, however, that for initial-boundary value problems these works do investigate the propensity of solutions to become smoother within the interior of the spatial domain. For instance, both [5] and [1] study solutions of the initial-value Dirichlet problem with only continuous boundary data and show that they are twice continuously differentiable on the interior. In the current paper, we present a few results highlighting the increased regularity that solutions of these equations enjoy. Though we also include theorems regarding existence and uniqueness Theorems.3 and.5 in order to work with 1 Mathematics Subject Classification. 35K14, 35K4, 35A5. Key words and phrases. Partial differential equations; uniformly parabolic; regularity; Fokker-Planck; diffusion. c 15 Texas State University - San Marcos. Submitted January 14, 15. Published August 1, 15. 1

S. PANKAVICH, N. MICHALOWSKI EJDE-15/5 a constructed solution, the fundamental aim of the paper is to establish a new and abbreviated technique for proving additional regularity properties of solutions for t > Theorems.1,.4, and.6. While these regularity properties are generally known, the associated proofs presented within the next section utilize different methods from previously-established theorems [, 1] and these may be extended to situations in which the previous proofs do not apply. In particular, our method of proof is novel, straightforward, and brief, and relies solely on a priori estimates. Hence, for problems in which traditional analytic tools like semigroup methods or explicit fundamental solutions cannot be utilized, the new approach contained within may still be effective. Finally, we note that our techniques also provide a sharp approximation for the rate of blowup of derivative estimates of solutions as t +.. Main results Let n N be given. We consider the Cauchy problem t u Dx u = fx, x R n, t > u, x = u x, x R n.1 where D, the diffusion matrix, and f, a forcing function, are both given. Equations like.1 arise within countless applications as diffusion is of fundamental importance to physics, chemistry, and biology, especially for problems in thermodynamics, neuroscience, cell biology, and chemical kinetics. As we are interested in displaying the utility of our method of proof, we wish to keep the framework of the current problem relatively straightforward. Thus, we will assume throughout that the diffusion matrix D = Dx satisfies the uniform ellipticity condition w Dxw θ w. for some θ > and all x, w R n. We note that under suitable conditions on the spatial decay of u, our method may also be altered to allow for diffusion coefficients that are not uniformly elliptic see [11]. Additionally, we will impose different regularity assumptions on D and f to arrive at different conclusions regarding the regularity of the solution u. Throughout the paper we will only assume that the initial data u is square integrable. Hence, even though u x may fail to be even weakly differentiable, we will show that ut, x gains spatial derivatives in L t L x on, R n. Hence, by the Sobolev Embedding Theorem, solutions may be classically differentiable in x assuming suitable regularity of the coefficients. In addition, we will show that u is continuous in time at any instant after the initial time t =. Though the setting.1 is fairly introductory and the assumptions on D and f are not fully relaxed, the new method of proof can be adapted to extend the results to problems with time-dependent terms, reaction-diffusion or advection-diffusion equations, systems of parabolic PDEs [1], different spatial settings such as a bounded or semi-infinite domain or manifold, and nonlinear equations, including quasilinear parabolic PDEs, nonlinear Fokker-Planck equations, and nonlinear transport problems arising in Kinetic Theory [1, 11, 14]. For the proofs, we will rely on a priori estimation and the standard Galerkin approximation to obtain regularity of the approximating sequence and then pass to the limit in order to obtain increased regularity of the solution. Hence, we focus on deriving the appropriate estimates as the remaining machinery is standard cf.

EJDE-15/5 INCREASED PARABOLIC REGULARITY 3 [3, 6, 9]. In what follows, C > will represent a constant that may change from line to line, and for derivatives we will use the notation k xut := x α ut α =k to sum over all multi-indices of order k N. When necessary, we will specify parameters on which constants may depend by using a subscript e.g., C T. Our first result establishes the main idea for low regularity of D and f. Theorem.1 Lower-order regularity. Assume f H 1 R n, u L R n, and D W 1, R n ; R n n. Then, for any T > and t, T ], any solution of.1 satisfies sup ut C T u + and x ut C T t T t u + H 1. Proof. We first prove two standard estimates of.1. First, we multiply by u, integrate the equation in x, integrate by parts and use Cauchy s Inequality to find dt ut + x u D x u dx 1 R + ut. n Then, using. and the assumption on f, we find dt ut C + ut θ x ut..3 Next, we take any first-order derivative with respect to x denoted by x of the equation, multiply by x u, and integrate to obtain dt xut + x x u D x x u dx+ x x u x D x u dx = x f x u dx. R n R n R n Thus, using Cauchy s inequality with the ellipticity and regularity assumptions, we find, for any ε >, dt xut x x u D x x udx R n x x u x D x u dx + x f x u dx R n R n θ x x ut + D W 1, ε x x ut + 1 ε xut + 1 x f + x ut. Choosing ε = θ D W 1, 1 and summing over all first-order spatial derivatives, we finally arrive at the estimate dt xut C H + xut θ 1 xut..4 Now, we utilize a linear expansion in t to prove the theorem. Let T > be given. Consider t [, T ] and define M 1 t = ut + θt xut.

4 S. PANKAVICH, N. MICHALOWSKI EJDE-15/5 We differentiate this quantity, and use the estimates.3 and.4 to find M 1t = d dt ut + θ xut + θt d dt xut C + ut θ x ut + θ xut + θt [ C H 1 + x ut θ x ut ] C T H 1 + M 1 t A straightforward application of Gronwall s inequality cf. [3] then implies M 1 t C T M 1 + H 1 = C T u + H 1. Finally, the bound on M 1 t yields ut C T, x ut C T θt and the second estimate holds on the interval, T ]. As T > is arbitrary, the result follows. Next, we formulate the existence of weak solutions for our lower-order regularity setting. Definition.. We say that u L [, T ]; H 1 R n, with t u L [, T ]; H 1 R n is a weak solution of.1 if for every v H 1 R n and t [, T ]. t u, v + Dx u, v = f, v u, x = u x, x R n.5 Theorem.3 Existence and uniqueness of weak solutions. Given u L R n and f H 1 R n and T > arbitrary, there exists a unique u C, T ]; H 1 R n C[, T ]; L R n and t u L [, T ]; H 1 R n that solves.5. Proof. Though the proof is well-known cf. [9, Ch. III, Thm 4.1] and follows a standard Galerkin approach, we include it for completeness. Take {w k x} k= to be an orthonormal basis for L with w k H s for s. Consider functions of the form u m x, t = m k= dm k tw kx with d m k t a smooth function of t. Then the equations sup t T t u m, w k + Dx u m, w k = f, w k u m,, w k = u, w k for k = 1,,... m reduce to a constant coefficient first order system of ODE s for d m k t, and hence existence of approximate solutions is readily established. For these solutions, u m t, we may repeat the proof of our a priori estimates verbatim. Thus we can conclude that u m t + θt xu m t C T u.

EJDE-15/5 INCREASED PARABOLIC REGULARITY 5 From the proof, we also have the inequality T dt u mt dt + T θ x u m dt C T T Using the above control of sup t T u m t, we find that T u m H 1 R n C T + u. Finally, fix v H 1 R n with v H 1 1 and consider t u m, v = Dx x u m, x v + f, v. + u dt. Using Cauchy-Schwartz and taking the supremum over v H 1 with v H 1 1 we find t u m t H 1 C T + u and T t u m t H t C T + u. Thus, u m is a bounded sequence in L [, T ]; H 1 R n and t u m is a bounded sequence in L [, T ]; H 1 R n, so we may extract a subsequence m j so that u mj u in L [, T ]; H 1 R n and t u mj t u in L [, T ]; H 1 R n. Now fix an integer N and consider vt = N k= d ktw k x, where d k t are fixed smooth functions. Then for m j > N, we have T Thus passing to the limit t u mj, v + Dx u mj, v dt = T t u, v + Dx u, v dt = T T f, v dt. f, v dt. Since v given above are dense in L [, T ]; H 1 R n, the equality holds for any v in this space. Since u L [, T ]; H 1 R n and t u L [, T ]; H 1 R n we have that u C[, T ]; L R n by [3, Thm. 3 5.9.]. To see u = u, we take v C 1 [, T ]; H 1 R n with the property that vt =, then we find that u mj, v T u mj, t v + Dx u mj, v dt = T f, v dt. Notice u mj = m j k= u, w k w k u in L R n as m j. Thus passing to the limit, we find that u, v = u, v for v arbitrary. Hence u = u. To prove uniqueness, notice that for any two solutions u and ũ the difference u ũ satisfies our equation with u = and f =. Thus our a priori estimate gives that sup t T ut ũt and uniqueness follows immediately. Finally, to show that u C, T ]; H 1 R n we consider w s t = ut + s ut. Then w s t satisfies our equation with f = and w = u us. From our a priori estimate w s t + θt xw s t C T u us. From the fact that u C[, T ]; L R n, we have for t > that lim s ut + s ut = and lim s x ut + s x ut =, whence the result follows.

6 S. PANKAVICH, N. MICHALOWSKI EJDE-15/5 Next, we use induction to extend the previous estimate to higher regularity assuming that D and f possess additional weak derivatives. Theorem.4 Higher-order regularity. For every m N, if f H m R n, D W m, R n ; R n n, and u L R n, then for any T > and t, T ] the previously derived solution of.1 satisfies k xut C T t k u + H for k =, 1,..., m. k Proof. We will prove the result by induction on m. The base case m = 1 follows immediately from Theorem.1. Prior to the inductive step, we first prove a useful estimate for solutions of.1. For the estimate, assume D and f possess k N derivatives in L and L, respectively. Take any kth-order derivative with respect to x denoted by x α of the equation, multiply by x α u, and integrate using integration by parts to obtain k α dt α x ut + x x α u x β D x γ R β xu dx = x α f x α u dx n R n and thus dt α x ut = x x α u R n j= β =j β+γ=α k j= β =j β+γ=α α x β D x γ β xu dx + x α f x α u dx. R n Labeling the first term on the right side A, we use. and the regularity of D with Cauchy s inequality with ε > to find k α A = x x α u D x x α u dx x xu k x β D x R n R β xu γ dx n j=1 β =j β+γ=α θ x α x ut + C D W k, ε x α x ut + 1 ε ut H k 1 θ x α x ut + C ut H k 1 where we have chosen ε = θ C D 1 W in the third line. Inserting this into k, the above equality and using Cauchy s inequality again we find dt α x ut θ x x α ut + C ut H + 1 k 1 α x f + 1 α x ut. Finally, summing over all first-order derivatives and using the regularity of f yields the estimate dt k xut θ k+1 x ut + C H + k ut H..6 k Now, we prove the theorem utilizing this estimate for k =, 1,..., m. Assume f H m R n and D W m, R n ; R n n. Since this implies that f H m 1 R n and D W m 1, R n ; R n n, we find that u C, ; H m 1 R n by the induction hypothesis. Let T > be given. Consider t [, T ] and define θt k Mt = k k! k xut. k=

EJDE-15/5 INCREASED PARABOLIC REGULARITY 7 We differentiate to find M θ k t k 1 t = k k 1! k xut + k=1 k= θt k k k! d dt k xut =: I + II. We use.6 for any k =,..., m and relabel the index of the sum so that II k= θt k θ k+1 k x ut + C H k! + k ut H k θ k+1 t k = k+1 k! k+1 x ut + C k= k= I θm+1 t m m+1 m! m+1 x ut + C k= θt k k H k! + k ut H k θt k k H k! + k ut H k Notice the induction hypothesis gives ut H C k 1 T t k 1 H + u k 1. Using this bound and the previous inequality within the estimate of M t, we find M t C k= θt k k H k! + k ut H k C T H m + m k= C T H m + Mt + m θt k [ k k k! x ut + ut ] H k 1 k= θt k k k! C T H m + u + Mt. C T t k 1 H + u k 1 Another straightforward application of Gronwall s inequality then implies Mt C T H + u m + M C T H + u. m Finally, the bound on Mt yields m x ut C T θt m which completes the inductive step and the proof. Theorem.5 Existence and Uniqueness of Weak solutions. Let m N be given. For any u L R n, f H m R n, and T > arbitrary, there exists a unique u C, T ]; H m R n C[, T ]; L R n and u L [, T ]; H 1 R n that solves.5. The result in the above theorem follows by a straightforward repetition of the proof of Theorem.3 with the obvious modifications. Of course, if the dimension n satisfies n < m 1 this result implies classical differentiability of solutions by Sobolev Embedding and these functions satisfy the PDE in the classical sense. Finally, this result can be easily used to deduce infinite spatial differentiability of the solution assuming D and f satisfy the same condition.

8 S. PANKAVICH, N. MICHALOWSKI EJDE-15/5 Theorem.6 Infinite Differentiability. If f H R n, D W, R n ; R n n, and u L R n, then for any T > arbitrary, any solution of.1 satisfies u C, T ] R n. Remark.7. On a bounded domain Ω R n, it is enough to impose f C Ω and D C Ω; R n n to arrive at the same result. The above result follows immediately by applying Theorem.4 for each m N, noticing that t u = D u + f is continuous, and bootstrapping this property for higher-order time derivatives. Remark.8. Though we have chosen to demonstrate the method for equations with time-independent coefficients, the same results can be obtained for timedependent diffusion coefficients D and sources f using the same proof, as long as these functions are sufficiently smooth in t. Additionally, similar arguments can be used to gain regularity of the solution in t, as well. Acknowledgements. We would like to thank the reviewer for helpful comments that have served to improve the paper. Stephen Pankavich is supported by NSF grant DMS-111667. References [1] Alcantara Felix, Jose Antonio; Calogero, Simone; Pankavich, Stephen; Spatially homogeneous solutions of the Vlasov-Nordstrom-Fokker-Planck System, Journal of Differential Equations, 57 14, 37 379. [] Brezis, Haim; Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 11. [3] Evans, Lawrence C.; Partial differential equations, Graduate Studies in Mathematics, 19, second edition, American Mathematical Society, Providence, RI, 1. [4] Folland, Gerald B.; Introduction to partial differential equations, second edition, Princeton University Press, Princeton, NJ, 1995. [5] Friedman, Avner; Partial differential equations of parabolic type, Prentice-Hall Inc., Englewood Cliffs, NJ, 1964 [6] Gilbarg, David; Trudinger, Neil S.; Elliptic partial differential equations of second order, Classics in Mathematics, Reprint of the 1998 edition, Springer-Verlag, Berlin, 1, [7] Han, Qing; A basic course in partial differential equations, Graduate Studies in Mathematics, 1, American Mathematical Society, Providence, RI, 11. [8] John, Fritz; Partial differential equations, Applied Mathematical Sciences, fourth edition, Springer-Verlag, New York, 1991. [9] Ladyženskaja, O. A.; Solonnikov, V. A.; Ural ceva, N. N.; Linear and quasilinear equations of parabolic type, Russian, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 3, American Mathematical Society, Providence, RI, 1968, [1] Lieberman, Gary M.; Second order parabolic differential equations, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. [11] Michalowski, Nicholas; Pankavich, Stephen; Global Classical Solutions to the One and one-half dimensional relativistic Vlasov-Maxwell-Fokker-Planck system, Kinetic and Related Models, 8, 15, 169-199. [1] Pankavich, Stephen; Parkinson, Christian; Mathematical Analysis of an in-host Model of Viral Dynamics with Spatial Heterogeneity, submitted. [13] Renardy, Michael; Rogers, Robert C.; An introduction to partial differential equations, Texts in Applied Mathematics, 13, second edition, Springer-Verlag, New York, 4. [14] Schaeffer, Jack; Pankavich, Stephen; Global Classical Solutions of the one and one-half dimensional Vlasov-Maxwell-Fokker-Planck system, Communications in Mathematical Sciences, to appear.

EJDE-15/5 INCREASED PARABOLIC REGULARITY 9 Stephen Pankavich Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO 841, USA E-mail address: pankavic@mines.edu Nicholas Michalowski Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 883, USA E-mail address: nmichalo@nmsu.edu