New bounds on gaps between primes

Similar documents
Sieve theory and small gaps between primes: Introduction

Small gaps between primes

NOTES ON ZHANG S PRIME GAPS PAPER

Small prime gaps. Kevin A. Broughan. December 7, University of Waikato, Hamilton, NZ

Lecture 7. January 15, Since this is an Effective Number Theory school, we should list some effective results. x < π(x) holds for all x 67.

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS

Towards the Twin Prime Conjecture

Distribution of Prime Numbers Prime Constellations Diophantine Approximation. Prime Numbers. How Far Apart Are They? Stijn S.C. Hanson.

The Twin Prime Problem and Generalisations (aprés Yitang Zhang)

Small gaps between prime numbers

B O U N D E D G A P S B E T W E E N P R I M E S. tony feng. may 2, 2014

Before giving the detailed proof, we outline our strategy. Define the functions. for Re s > 1.

arxiv: v1 [math.ho] 16 Jan 2017

Dense Admissible Sets

ON THE RESIDUE CLASSES OF π(n) MODULO t

PRIMES IN TUPLES I arxiv:math/ v1 [math.nt] 10 Aug 2005

Gaps between primes: The story so far

New developments on the twin prime problem and generalizations

Bounded gaps between primes

Lecture 1: Small Prime Gaps: From the Riemann Zeta-Function and Pair Correlation to the Circle Method. Daniel Goldston

The dichotomy between structure and randomness. International Congress of Mathematicians, Aug Terence Tao (UCLA)

arxiv: v1 [math.nt] 27 May 2013

BEST POSSIBLE DENSITIES OF DICKSON m-tuples, AS A CONSEQUENCE OF ZHANG-MAYNARD-TAO

1 i<j k (g ih j g j h i ) 0.

Twin primes (seem to be) more random than primes

arxiv:math/ v2 [math.nt] 4 Feb 2006

An Overview of Sieve Methods

Séminaire BOURBAKI March ème année, , n o 1084

The path to recent progress on small gaps between primes

Elementary Number Theory

18.785: Analytic Number Theory, MIT, spring 2007 (K.S. Kedlaya) Brun s combinatorial sieve

Séminaire BOURBAKI March ème année, , n o 1084

Results of modern sieve methods in prime number theory and more

Variants of the Selberg sieve, and bounded intervals containing many primes

Addendum to Conjecture 50, by Patrick Capelle. November, 17, 2006.

ON PRIMES IN QUADRATIC PROGRESSIONS & THE SATO-TATE CONJECTURE

Big doings with small g a p s

Primes in tuples II. Cem Yalçin Yıldırım. Bo gaziçi University Istanbul, Turkey. 1. Introduction. p n+1 p n log p n. = lim inf

A New Sieve for the Twin Primes

Arithmetic Statistics Lecture 1

arxiv: v1 [math.nt] 30 Oct 2014

arxiv: v1 [math.nt] 15 Oct 2007

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Some new representation problems involving primes

Analytic. Number Theory. Exploring the Anatomy of Integers. Jean-Marie. De Koninck. Florian Luca. ffk li? Graduate Studies.

Theorem 1.1 (Prime Number Theorem, Hadamard, de la Vallée Poussin, 1896). let π(x) denote the number of primes x. Then x as x. log x.

Twin progress in number theory

Dept of Math., SCU+USTC

The ternary Goldbach problem. Harald Andrés Helfgott. Introduction. The circle method. The major arcs. Minor arcs. Conclusion.

Generalizing the Hardy-Littlewood Method for Primes

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Possible Group Structures of Elliptic Curves over Finite Fields

arxiv: v6 [math.nt] 6 Nov 2015

Riemann s Zeta Function and the Prime Number Theorem

SQUARE PATTERNS AND INFINITUDE OF PRIMES

BOUNDED GAPS BETWEEN PRIMES IN NUMBER FIELDS AND FUNCTION FIELDS

The Green-Tao Theorem on arithmetic progressions within the primes. Thomas Bloom

Carmichael numbers and the sieve

E-SYMMETRIC NUMBERS (PUBLISHED: COLLOQ. MATH., 103(2005), NO. 1, )

An integer p is prime if p > 1 and p has exactly two positive divisors, 1 and p.

Flat primes and thin primes

On the sum of a prime and a square-free number

On the Fractional Parts of a n /n

Clusters of primes with square-free translates

The Riddle of Primes

150 Years of Riemann Hypothesis.

Large gaps in sets of primes and other sequences II. New bounds for large gaps between primes Random methods and weighted sieves

Introduction to Sets and Logic (MATH 1190)

REFINED GOLDBACH CONJECTURES WITH PRIMES IN PROGRESSIONS

Fermat numbers and integers of the form a k + a l + p α

First, let me recall the formula I want to prove. Again, ψ is the function. ψ(x) = n<x

ANOTHER APPLICATION OF LINNIK S DISPERSION METHOD

DETERMINISTIC METHODS TO FIND PRIMES

Research Statement. Enrique Treviño. M<n N+M

On the difference of primes

Harmonic sets and the harmonic prime number theorem

On pseudosquares and pseudopowers

arxiv: v2 [math.nt] 15 Feb 2014

PRIMES IN INTERVALS OF BOUNDED LENGTH

A 1935 Erdős paper on prime numbers and Euler s function

arxiv: v2 [math.nt] 28 Jun 2012

Math 259: Introduction to Analytic Number Theory The Selberg (quadratic) sieve and some applications

ON THE RESIDUE CLASSES OF (n) MODULO t

CHAPTER 6. Prime Numbers. Definition and Fundamental Results

Sums of Squares. Bianca Homberg and Minna Liu

Dense product-free sets of integers

Various new observations about primes

The ranges of some familiar arithmetic functions

Les chiffres des nombres premiers. (Digits of prime numbers)

On pseudosquares and pseudopowers

Primes. Rational, Gaussian, Industrial Strength, etc. Robert Campbell 11/29/2010 1

Analytic Number Theory

Bounded gaps between Gaussian primes

Sums and products. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA. Dartmouth Mathematics Society May 16, 2012

A Local-Global Principle for Diophantine Equations

Solving a linear equation in a set of integers II

WXML Final Report: Primality of Polynomials

Li Anqi. On Density of Integers and the Sumset. under the direction of Hong Wang

A remark on a conjecture of Chowla

Prime Number Theory and the Riemann Zeta-Function

Transcription:

New bounds on gaps between primes Andrew V. Sutherland Massachusetts Institute of Technology Brandeis-Harvard-MIT-Northeastern Joint Colloquium October 17, 2013 joint work with Wouter Castryck, Etienne Fouvry, Gergely Harcos, Emmanuel Kowalski, Philippe Michel, Paul Nelson, Eytan Paldi, Janos Pintz, Terence Tao, Xiao-Feng Xie and all the Polymath8 contributors Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 1 / 28

Bounded gaps between primes Yitang Zhang It is proved that where p n is the n-th prime. lim inf n (p n+1 p n ) < 7 10 7, Our method is a refinement of the recent work of Goldston, Pintz and Yildirim on the small gaps between consecutive primes. A major ingredient of the proof is a stronger version of the Bombieri- Vinogradov theorem that is applicable when the moduli are free from large prime divisors only, but it is adequate for our purpose. Annals of Mathematics (to appear). received April 17, 2013, accepted May 21, 2013. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 2 / 28

The distribution of primes For any fixed tuple of distinct integers H = (h 1,... h k ), let π H (x) count the integers n x such that n + h 1,... n + h k are all primes. The prime number theorem says that for any 1-tuple H, π H (x) x 2 dt log t. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 3 / 28

The distribution of primes For any fixed tuple of distinct integers H = (h 1,... h k ), let π H (x) count the integers n x such that n + h 1,... n + h k are all primes. The prime number theorem says that for any 1-tuple H, π H (x) x 2 dt log t. The twin prime number theorem* says that for H = (0, 2), π H (x) Π 2 x 2 dt (log t) 2, where Π 2 = 0.66016181584686957... is the twin prime constant. Not yet a theorem. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 3 / 28

Admissible tuples We call a k-tuple admissible if it does not form a complete set of residues modulo any prime (trivially satisfied for primes p > k). inadmissible: (0, 1), (0, 2, 4), (0, 2, 6, 8, 12, 14). admissible: (0, 2), (0, 2, 6), (0, 4, 6, 10, 12, 16). Conjecture (Hardy-Littlewood 1923) For any admissible k-tuple H we have π H (x) c H x 2 dt (log t) k, where c H > 0 is an explicitly computable constant. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 4 / 28

Counting primes Prime number theorem: p x 1 x log x Prime number theorem in arithmetic progressions (a q): 1 p x p a mod q x φ(q) log x Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 5 / 28

Counting primes Prime number theorem: Λ(n) x n x Prime number theorem in arithmetic progressions (a q): Λ(n) n x n a mod q x φ(q) Where Λ(n) = { log p if n is a power of p, 0 otherwise. is the von Mangoldt function. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 5 / 28

The Bombieri-Vinogradov theorem For a q, the discrepancy in the distribution of p a mod q is Λ (x; a, q) = (reality minus expectation). Λ(n) 1 φ(q) x n 2x n a mod q Λ(n) x n 2x Theorem (Bombieri-Vinogradov 1965) For any real constants c and θ with θ < 1/2: q x θ max a q Λ(x; a, q) = O ( x log c x ). Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 6 / 28

Elliot-Halberstam conjecture and bounded gaps Let EH[θ] denote the bound in the Bombieri-Vinogradov theorem. Conjecture (Elliott-Halberstam 1968) EH[θ] holds for all θ < 1. Let B[H] denote the claim lim inf n (p n+1 p n ) H. Theorem (Goldston-Pintz-Yildirim 2009) For every θ > 1/2 there is an H for which EH[θ] implies B[H]. In particular, EH[0.971] B[16]. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 7 / 28

The GPY lemma Let DHL[k, n] denote the claim that every admissible k-tuple H has infinitely many translates a + H that contain at least n primes. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 8 / 28

The GPY lemma Let DHL[k, n] denote the claim that every admissible k-tuple H has infinitely many translates a + H that contain at least n primes. Lemma (Goldston-Pintz-Yildirim 2009) Let k 0 2 and l 0 1 be integers, let 0 < ϖ < 1/4, and suppose ( 1 + 4ϖ > 1 + 1 ) ( 1 + 2l ) 0 + 1. 2l 0 + 1 k 0 Then EH[1/2 + 2ϖ] implies DHL[k, 2] for all k k 0. The optimal choice of l 0 allows one to make k 0 proportional to ϖ 2. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 8 / 28

The GPY lemma For any integer n and admissible k-tuple H, let Θ(n + H) = h H θ(n + h) where θ(n) = log n if n is prime and 0 otherwise. To prove DHL[k 0, 2] it suffices to show that for any admissible k 0 -tuple H there exists a function λ: Z R for which λ 2 (n) Θ(n + H) > λ 2 (n) log(3x) (1) x n 2x x n 2x holds for all sufficiently large x. GPY show how to construct λ(n) so that EH[1/2 + 2ϖ] and the hypothesis on k 0 imply (1). Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 9 / 28

Bounded gaps Let H(k) denote the minimal diameter of an admissible k-tuple. Then for ϖ and k 0 as in the GPY lemma, EH[1/2 + 2ϖ] DHL[k 0, 2] B[H(k 0 )]. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 10 / 28

Bounded gaps Let H(k) denote the minimal diameter of an admissible k-tuple. Then for ϖ and k 0 as in the GPY lemma, EH[1/2 + 2ϖ] DHL[k 0, 2] B[H(k 0 )]. But proving EH[θ] for any θ > 1/2 appears to be out of reach. As noted by Goldston, Pintz, and Yildirim, However, any improvement in the level of distribution beyond 1 /2 probably lies very deep, and even the GRH does not help. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 10 / 28

A weaker version of EH[θ] Let MPZ[ϖ, δ] denote the claim that for any fixed c, ( ) x Λ (x; a, q) = O log c, x q where q varies over x δ -smooth squarefree integers up to x 1 /2+2ϖ and a is a fixed x δ -coarse integer (depending on x but not q).* Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 11 / 28

A weaker version of EH[θ] Let MPZ[ϖ, δ] denote the claim that for any fixed c, ( ) x Λ (x; a, q) = O log c, x q where q varies over x δ -smooth squarefree integers up to x 1 /2+2ϖ and a is a fixed x δ -coarse integer (depending on x but not q).* Theorem (Zhang 2013) 1 For ϖ, δ > 0 there exists k 0 such that MPZ[ϖ, δ] DHL[k 0, 2]. 2 MPZ[ϖ, ϖ] holds for ϖ 1/1168. Zhang imposes an additional constraint on a that we don t use. This statement was essentially proved independently by Motohashi and Pintz. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 11 / 28

Zhang s proof The proof that MPZ[ϖ, δ] DHL[k 0, 2] follows along the lines of the GPY proof that EH[θ] DHL[k 0, 2]. To establish MPZ[ϖ, δ], Zhang uses the Heath-Brown identity and a combinatorial lemma to reduce the problem to estimating three types of sums (Types I, II, and III). The most delicate part of the proof involves the Type III sums. Here Zhang relies on a result of Birch and Bombieri that depends on Deligne s proof of the Weil conjectures.* Specifically, the Riemann Hypothesis (RH) for varieties over finite fields. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 12 / 28

Zhang s result Using ϖ = δ = 1/1168, Zhang shows that DHL[k 0, 2] holds for k 0 3.5 10 6. He then notes that any k-tuple of primes p > k is admissible, and therefore π(7 10 7 ) π(3.5 10 6 ) > 3.5 10 6 implies lim inf n (p n+1 p n ) < 7 10 7. (1.5) This result is, of course, not optimal. The condition k 0 3.5 10 6 is also crude and there are certain ways to relax it. To replace the right side of (1.5) by a value as small as possible is an open problem that will not be discussed in this paper. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 13 / 28

Two weeks later... Shortly after Zhang s paper appeared it was noted that p π(k0 )+k 0 p k0 +1 = 63 374 611 3 500 017 = 59 874 594. So using the k 0 -tuple suggested by Zhang actually yields lim inf (p n+1 p n ) < 6 10 7. Less trivial improvements to both H(k 0 ) and k 0 soon followed. On June 4th the Polymath8 project was officially launched. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 14 / 28

What is a polymath project? According to wikipedia: The Polymath Project is a collaboration among mathematicians to solve important and difficult mathematical problems by coordinating many mathematicians to communicate with each other on finding the best route to the solution. The first polymath project was initiated by Tim Gowers in 2009 to find a combinatorial proof of the density Hales-Jewett theorem. The project was a success and led to two papers published under the pseudonym D.H.J. Polymath. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 15 / 28

Polymath8: Bounded gaps between primes Primary goals: 1 Improving the bound on gaps between primes. 2 Understanding and clarifying Zhang s argument. Three natural sub-projects for addressing the first goal: 1 Improving upper bounds on H = H(k 0 ). 2 Minimizing k 0 for which MPZ(ϖ, δ) implies DHL(k 0, 2). 3 Maximizing ϖ for which MPZ(ϖ, δ) holds. Polymath8 web page. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 16 / 28

Improved bounds on prime gaps ϖ, δ constraint k 0 H comment ϖ = δ = 1 /1168 3 500 000 70 000 000 Zhang s paper ϖ = δ = 1 /1168 3 500 000 55 233 504 Optimize H ϖ = δ = 1 /1168 341 640 4 597 926 Optimize k 0 ϖ = δ = 1 /1168 34 429 386 344 Make k 0 ϖ 3 /2 828ϖ + 172δ < 1 22 949 248 816 Allow ϖ δ 280ϖ + 80δ < 3 873 6712 Optimize ϖ, δ constraint 280ϖ + 80δ < 3 720 5414 Make k 0 less sensitive to δ 600ϖ + 180δ < 7 632 4680 Further optimize ϖ, δ 1080ϖ + 330δ < 13 603 4422 Subject to verification Without relying on Deligne s theorems (just RH for curves): 168ϖ + 48δ < 1 1783 14 950 A detailed timeline of improvements can be found here. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 17 / 28

Improving the dependence of k 0 on ϖ In both Zhang s work and the GPY theorem k 0 ϖ 2. But this can be improved to k 0 ϖ 3/2. Theorem (D.H.J. Polymath 2013) Let k 0 2 and 0 < ϖ < 1/4 and 0 < δ < 1/4 + ϖ satisfy (1 + 4ϖ)(1 κ) > j 2 k 0 2 k 0 (k 0 1), where j k is the first positive zero of the Bessel function J k of the first kind and κ = κ(ϖ, δ, k 0 ) is an explicit error term. Then MPZ[ϖ, δ] DHL[k 0, 2]. Moreover, EH[1/2 + 2ϖ] DHL[k 0, 2] with κ = 0.* The second statement was independently proved by Farkas, Pintz, and Revesz. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 18 / 28

Reducing the dependence of k 0 on δ In order to maximize ϖ we would like to make δ as small as possible, but decreasing δ increases the error term κ = κ(ϖ, δ, k 0 ). Using a stronger form of MPZ[ϖ, δ] where the moduli are allowed to range over values that are not necessarily x δ -smooth but satisfy a weaker dense-divisibility requirement (with respect to x δ ), we are able to improve the dependence of κ on δ. This allows us to make δ very small (thereby increasing ϖ), while still keeping κ nearly negligible. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 19 / 28

Narrow admissible tuples The final step to proving an explicit bound on prime gaps is constructing an admissible k-tuple with small diameter. This gives us an upper bound on H(k), hence on the gap. This problem has been studied in relation to the second conjecture of Hardy and Littlewood (the first is the prime tuples conjecture). Conjecture (Hardy-Littlewood 1923) For all x, y 2 we have π(x + y) π(x) + π(y). Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 20 / 28

Narrow admissible tuples The final step to proving an explicit bound on prime gaps is constructing an admissible k-tuple with small diameter. This gives us an upper bound on H(k), hence on the gap. This problem has been studied in relation to the second conjecture of Hardy and Littlewood (the first is the prime tuples conjecture). Conjecture (Hardy-Littlewood 1923) For all x, y 2 we have π(x + y) π(x) + π(y). The two Hardy-Littlewood conjectures together imply But must this be true? H(k) p k. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 20 / 28

Incompatibility of the Hardy-Littlewood conjectures Theorem (Hensley-Richards 1972) The Hardy-Littlewood conjectures are incompatible. The proof uses an admissible tuple constructed by sieving an interval [ x, x] of residue classes 0 mod p for increasing primes p, stopping as soon as the middle k survivors form an admissible k-tuple. They show that, asymptotically, one can make 2x < p k. Theorem (Engelsma 2005) The Hardy-Littlewood conjectures are incompatible for k = 447. The proof is a 447-tuple with diameter 3158 < p 447 = 3163. In the process of searching for this example, Engelsma obtained tight bounds on H(k) for k 342. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 21 / 28

Incompatibility of the Hardy-Littlewood conjectures Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 22 / 28

Asymptotic bounds on H(k) The Hensley-Richards results imply that H(k) ( 1 + o(1) ) k log k. Brun and Titchmarsh proved that for all sufficiently large x we have π(x + y) π(x) ( 1 + o(1) ) 2y log y. Their proof applies to any admissible tuple, yielding the lower bound H(k) (1/2 o(1))k log k. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 23 / 28

Asymptotic bounds on H(k) The Hensley-Richards results imply that H(k) ( 1 + o(1) ) k log k. Brun and Titchmarsh proved that for all sufficiently large x we have π(x + y) π(x) ( 1 + o(1) ) 2y log y. Their proof applies to any admissible tuple, yielding the lower bound H(k) (1/2 o(1))k log k. We actually expect that H(k) = k log k + O(k). Numerically, H(k) k log k + k appears to hold for all sufficiently large k. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 23 / 28

Sieving for admissible tuples We can explicitly construct admissible k-tuples by sieving an interval of integers of one residue class modulo each prime p k. But this is overkill, one can typically terminate the sieve early. Some examples: 1 Eratosthenes: sieve [2, x] at 0 mod p until the first k survivors are admissible. 2 Hensley-Richards: sieve [ x, x] at 0 mod p until the middle k survivors are admissible. 3 Schinzel: sieve [2, x] at 1 mod p for p y and 0 mod p for p > y until the first k survivors are admissible. 4 Greedy: sieve [0, x] of a minimally occupied residue class a mod p until the first k survivors are admissible. Shifting the sieve interval slightly often yields better results. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 24 / 28

Discipline versus greed All of the structured approaches are demonstrably sub-optimal, and the greedy approach is usually worse! However, there is a hybrid approach works that remarkably well. Let w = k log k + k, and for even integers s in [ w, w] : 1 Sieve [s, s + w] at 1 mod 2 and 0 mod p for primes p w. 2 For increasing primes p > w sieve a minimally occupied residue class mod p until the tuple H of survivors is admissible. 3 If H k, adjust the sieving interval and repeat until H = k. Output an H with minimal diameter among those constructed. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 25 / 28

Discipline versus greed All of the structured approaches are demonstrably sub-optimal, and the greedy approach is usually worse! However, there is a hybrid approach works that remarkably well. Let w = k log k + k, and for even integers s in [ w, w] : 1 Sieve [s, s + w] at 1 mod 2 and 0 mod p for primes p w. 2 For increasing primes p > w sieve a minimally occupied residue class mod p until the tuple H of survivors is admissible. 3 If H k, adjust the sieving interval and repeat until H = k. Output an H with minimal diameter among those constructed. This algorithm is not optimal, but it typically gets within one percent of the best known results (including cases where H(k) is known). (demo) Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 25 / 28

Sieve comparison k 632 1783 34 429 341 640 3 500 000 k primes past k 5028 16 174 420 878 5 005 362 59 874 594 Eratosthenes 4860 15 620 411 946 4 923 060 59 093 364 H-R 4918 15 756 402 790 4 802 222 57 554 086 Shifted H-R 4876 15 470 401 700 4 788 240 57 480 832 Shifted Schinzel 4868 15 484 399 248 4 740 846 56 789 070 Shifted hybrid 4710 15 036 388 076 4 603 276 55 233 744 Best known 4680 14 950 386 344 4 597 926 55 233 504 k log k + k 4707 15 130 394 096 4 694 650 56 238 957 Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 26 / 28

Further optimizations Given a narrow admissible tuple, there a variety of combinatorial optimization methods that we can apply to try and improve it. These include local search and perturbation methods. The technique that we have found most useful can be described as a type of genetic algorithm. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 27 / 28

Further optimizations Given a narrow admissible tuple, there a variety of combinatorial optimization methods that we can apply to try and improve it. These include local search and perturbation methods. The technique that we have found most useful can be described as a type of genetic algorithm. Given a k-tuple H, we generate a new tuple H by sieving the same interval of the same residue classes for p k log k, and randomly choosing a nearly minimally occupied class for p > k log k. The set H H contains an admissible k-tuple (namely, H), but if we sieve this set by greedily choosing residue classes as required, we may obtain a k-tuple H that is actually narrower than H. Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 27 / 28

Database of admissible tuples We have established an online database of admissible tuples. It includes at least one example of an admissible k-tuple of least known diameter for 2 k 5000 and is open for submission. For k 342 it contains optimal tuples contributed by Engelsma. For many k > 342 we have tuples narrower than those obtained by Engelsma, and in every case we are able to match his results. Finding better lower bounds for H(k) remains an open problem. For k = 632 we have H(632) 4276, but we suspect that in fact the upper bound H(632) 4680 is tight. (admissible 632-tuple of diamter 4680) Andrew V. Sutherland (MIT) New bounds on gaps between primes October 17, 2013 28 / 28