Loop Amplitudes from Ambitwistor Strings

Similar documents
Ambitwistor Strings beyond Tree-level Worldsheet Models of QFTs

Loop Integrands from Ambitwistor Strings

Ambitwistor strings, the scattering equations, tree formulae and beyond

Twistors, Strings & Twistor Strings. a review, with recent developments

Amplitudes Conference. Edinburgh Loop-level BCJ and KLT relations. Oliver Schlotterer (AEI Potsdam)

On the Null origin of the Ambitwistor String

Perturbative formulae for gravitational scattering

Modern Approaches to Scattering Amplitudes

Implication of CHY formulism

Connecting the ambitwistor and the sectorized heterotic strings

A New Identity for Gauge Theory Amplitudes

Twistor strings for N =8. supergravity

Twistors, amplitudes and gravity

Progress on Color-Dual Loop Amplitudes

Coefficients of one-loop integral

Poles at Infinity in Gravity

CHY formalism and null string theory beyond tree level

N = 4 SYM and new insights into

New Ambitwistor String Theories

Twistor Space, Amplitudes and No-Triangle Hypothesis in Gravity

MHV Vertices and On-Shell Recursion Relations

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

Progress on Color-Dual Loop Amplitudes

Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops

Strings 2012, Munich, Germany Gravity In Twistor Space

Loop Amplitudes from MHV Diagrams

Amplitudes & Wilson Loops at weak & strong coupling

Gravity as a Double Copy of Gauge Theory

The Non-commutative S matrix

Welcome: QCD Meets Gravity

Maximal Unitarity at Two Loops

Properties of Yang-Mills scattering forms

Color-Kinematics Duality for QCD Amplitudes

Scattering Forms and (the Positive Geometry of) Kinematics, Color & the Worldsheet

Is N=8 Supergravity Finite?

Amplitudes beyond four-dimensions

MHV Diagrams and Tree Amplitudes of Gluons

Supergravity from 2 and 3-Algebra Gauge Theory

Non-Planar N =4 SYM at Four Loops and Supersum Structures

Elliptic dilogarithms and two-loop Feynman integrals

Feynman integrals as Periods

The ultraviolet structure of N=8 supergravity at higher loops

Scattering Amplitudes! in Three Dimensions

Scattering Forms from Geometries at Infinity

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

arxiv: v3 [hep-th] 19 Jun 2018

Towards Determining the UV Behavior of Maximal Supergravity

Contact interactions in string theory and a reformulation of QED

Positive Geometries and Canonical Forms

Feynman Integrals, Regulators and Elliptic Polylogarithms

Instantons in string theory via F-theory

A New Regulariation of N = 4 Super Yang-Mills Theory

Half BPS solutions in type IIB and M-theory

N = 2 supersymmetric gauge theory and Mock theta functions

Expansion of Einstein-Yang-Mills Amplitude

Updates on ABJM Scattering Amplitudes

Status of Perturbative Approach to Supergravity

Review: Modular Graph Functions and the string effective action

Lecture 8: 1-loop closed string vacuum amplitude

Two-loop Remainder Functions in N = 4 SYM

e θ 1 4 [σ 1,σ 2 ] = e i θ 2 σ 3

Spinning strings and QED

arxiv: v1 [hep-th] 11 Oct 2017

abelian gauge theories DUALITY N=8 SG N=4 SG

Spectral flow as a map between (2,0) models

Is Perturbative N = 8 Supergravity Finite?

Scattering amplitudes and AdS/CFT

Surprises in UV Behavior of Gravity Theories

Topological reduction of supersymmetric gauge theories and S-duality

Heterotic Torsional Backgrounds, from Supergravity to CFT

Week 11 Reading material from the books

A Brief Introduction to AdS/CFT Correspondence

What is F-theory? David R. Morrison. University of California, Santa Barbara

THE. Secret Life OF SCATTERING AMPLITUDES. based on work with Lionel Mason and with Mat Bullimore. David Skinner - Perimeter Institute

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

A new look at the nonlinear sigma model 1

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY

arxiv: v2 [hep-th] 24 Mar 2017

Scattering Amplitudes

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

Scattering Equations and Matrices: From Einstein To Yang Mills, DBI and NLSM

Lectures on Twistor Strings and Perturbative Yang-Mills Theory

Scattering Amplitudes and Holomorphic Linking

Exercise 1 Classical Bosonic String

Gravity as a Double Copy of Gauge Theory

Durham Research Online

Discontinuities of Feynman Integrals

Supergravity from N = 4 sym Amplitudes

The Ultraviolet Structure of N = 8 Supergravity at Four Loops and Beyond

Quantization of the open string on exact plane waves and non-commutative wave fronts

On the Scattering Amplitude of Super-Chern-Simons Theory

KLT-type relations for QCD amplitudes

Towards One-Loop MHV Techniques

The Two-Loop Five-Point Amplitude in N=4 Super-Yang-Mills Theory and N=8 Supergravity

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Lectures on Superstring Amplitudes

First order string theory and the Kodaira-Spencer equations. Integrable Systems in Quantum Theory Lorentz Center, Leiden, December 2008

Integrable spin systems and four-dimensional gauge theory

1 Polyakov path integral and BRST cohomology

Transcription:

Loop Amplitudes from Ambitwistor Strings Yvonne Geyer QCD meets Gravity Workshop Dec 5-9, 2016 UCLA arxiv:1507.00321, 1511.06315, 1607.08887 YG, L. Mason, R. Monteiro, P. Tourkine

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 M g,n (... ) map: Σ M

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [Witten, Berkovits, RSV; Hodges, Cachazo-YG, Skinner-Mason] + + +... = (0) + (1) +... map: Σ T CP 3 4 D = 4, maximal supersymmetry

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [Witten, Berkovits, RSV; Hodges, Cachazo-YG, Skinner-Mason] + + +... = (0) + (1) +... map: Σ T CP 3 4 D = 4, maximal supersymmetry

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [CHY, Skinner-Mason, Adamo-Casali-Skinner, CGMMR] + + +... E (g) i = 0 = (0) + (1) +...

Motivation: worldsheet models String Theory + + +... α 0 (0) + (1) +... integration over moduli space: g 0 (... ) M g,n map: Σ M Worldsheet models of QFT [CHY, Skinner-Mason, Adamo-Casali-Skinner, CGMMR] + + +... E (g) i = 0 = (0) + (1) +... integration fully localised on the Scattering Equations {E (g) i } map: Σ A = {phase space of complex null rays} upshot: generic for massless QFTs

Scattering Equations [Cachazo-He-Yuan, Mason-Skinner] Construction: for n null momenta k i, define P µ (σ, σ i ) Ω 0 (Σ, K Σ ) n k iµ P µ (σ) = dσ. σ σ i i=1 z 1 z 2 z n

Scattering Equations [Cachazo-He-Yuan, Mason-Skinner] Construction: for n null momenta k i, define P µ (σ, σ i ) Ω 0 (Σ, K Σ ) n k iµ P µ (σ) = dσ. σ σ i i=1 z 1 z 2 z n Scattering Equations at tree-level Enforce P 2 = 0 on Σ: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j j i

Scattering Equations [Cachazo-He-Yuan, Mason-Skinner] Construction: for n null momenta k i, define P µ (σ, σ i ) Ω 0 (Σ, K Σ ) n k iµ P µ (σ) = dσ. σ σ i i=1 z 1 z 2 z n Scattering Equations at tree-level Enforce P 2 = 0 on Σ: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j j i σ a i E i = 0 for a = 0, 1, 2 SL(2, C) invariant (n 3) independent equations = dim(m 0,n ) (n 3)! solutions factorisation properties

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j j i

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j Factorisation: j i SE 1 k 2 I boundary of M 0,n factorisation channel (unitarity, locality)

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j Factorisation: j i SE 1 k 2 I boundary of M 0,n factorisation channel (unitarity, locality) With σ i = σ I + εx i for i I, the pole is given by i I x i E (I) i = i,j I x i k i k j x i x j = 1 2 k i k j = ki 2. i,j I

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j Factorisation: j i SE 1 k 2 I boundary of M 0,n Upshot: amplitudes take the form M = σ j E i (σ j )=0 factorisation channel (unitarity, locality) I(σ, k, ɛ) J(σ, k).

Scattering Equations Universality for massless QFTs Scattering Equations at tree-level: E i = Res σi P 2 k i k j (σ) = k i P(σ i ) = = 0. σ i σ j Factorisation: j i SE 1 k 2 I boundary of M 0,n factorisation channel (unitarity, locality) Upshot: amplitudes take the form M = dµ δ ( ) E i I(σ, k, ɛ). M 0,n i

The target space Ambitwistor space - the phase space of complex null geodesics Ambitwistor space A = space of (complex) null rays in M C symplectic quotient of cotangent bundle of spacetime A := { (X µ, P µ, Ψ µ r ) T M P 2 = Ψ r P = 0 } / {D 0, D r } with Hamiltonian vector fields D 0 = P, D r = Ψ r + P Ψr A is a symplectic holomorphic manifold, with symplectic potential Θ = P dx + 1 Ψ r dψ r 2 r C d 1 X S d 2

The Ambitwistor String [Mason-Skinner, Berkovits] Construct a theory describing maps Σ A: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, where P µ Ω 0 (Σ, K Σ ), Ψ µ i ΠΩ 0 (Σ, K 1/2 Σ ).

The Ambitwistor String [Mason-Skinner, Berkovits] Construct a theory describing maps Σ A: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, where P µ Ω 0 (Σ, K Σ ), Ψ µ i ΠΩ 0 (Σ, K 1/2 Σ ). Geometrically: action from symplectic potential Θ gauge fields e and χ r impose the constraints reducing to A gauge freedom: δx µ = αp µ, δp µ = 0, δe = α.

The Ambitwistor String [Mason-Skinner, Berkovits] Construct a theory describing maps Σ A: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, where P µ Ω 0 (Σ, K Σ ), Ψ µ i ΠΩ 0 (Σ, K 1/2 Σ ). Geometrically: action from symplectic potential Θ gauge fields e and χ r impose the constraints reducing to A gauge freedom: δx µ = αp µ, δp µ = 0, δe = α. BRST quantisation: Q = ct + cp 2 + γ r P Ψ r Vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X [Q, V] = 0 k 2 = ɛ k = 0

Geometry of the Scattering Equations action: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X

Geometry of the Scattering Equations action: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X Integrate out X in presence of vertex operators: P µ = 2πi k iµ δ(σ σ i )dσ, so P µ (σ) = n i=1 k iµ σ σ i dσ.

Geometry of the Scattering Equations action: S = 1 2π P X + 1 2 r Ψ r Ψ r e 2 P2 χ r P Ψ r, vertex operators: V = c cδ 2 (γ) ɛ µ ɛ ν Ψ µ 1 Ψν 2 eik X Integrate out X in presence of vertex operators: P µ = 2πi k iµ δ(σ σ i )dσ, so P µ (σ) = n i=1 k iµ σ σ i dσ. Moduli of gauge field e forces P 2 = 0; Res σi P 2 (σ) = k i P(σ i ) = 0. scattering equations map to A

CHY formulae [Cachazo-He-Yuan] The correlation functions yield the CHY formulae: Tree-level S-matrix of massless theories: dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i

CHY formulae [Cachazo-He-Yuan] The correlation functions yield the CHY formulae: Tree-level S-matrix of massless theories: dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i Integration over M 0,n fixed by imposing the SE E i I n from fermion correlators: I n = Pf (M) Pf ( M) for M = M(k i, ɛ i, σ i )

CHY formulae [Cachazo-He-Yuan] The correlation functions yield the CHY formulae: Tree-level S-matrix of massless theories: dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i Integration over M 0,n fixed by imposing the SE E i I n from fermion correlators: I n = Pf (M) Pf ( M) for M = M(k i, ɛ i, σ i ) progress on evaluation without solving the SE [Cachazo-Gomez, Baadsgaard et al, Sogard-Zhang,...] family of massless models

Comment: Colour-Kinematic Duality Gravity YM 2 [Bern-Carrasco-Johansson] Biadjoint scalar: colour c i colour c j Gauge theory: colour c i kinematics n i Gravity: kinematics n i kinematics n i Gauge theory amplitude: n i c i A = d i With c i satisfying the Jacobi identity Γ i + = 0 f dae f ebc f abe f ecd + f ace f edb = 0

Comment: Colour-Kinematic Duality Gravity YM 2 [Bern-Carrasco-Johansson] Biadjoint scalar: colour c i colour c j Gauge theory: colour c i kinematics n i Gravity: kinematics n i kinematics n i Gauge theory amplitude: n i c i A = d i With c i satisfying the Jacobi identity Γ i + = 0 f dae f ebc f abe f ecd + f ace f edb = 0 Find n i satisfying Jacobi, then M = Γ i n i n i d i

CHY formulae and the Double Copy [Cachazo-He-Yuan] Tree-level S-matrix of massless theories: dσ M n,0 = M0,n n k i k j δ vol G σ i σ j I n i j i Gravity: I n = Pf (M) Pf ( M) Yang-Mills theory: I n = C n Pf (M) Bi-adjoint scalar: with building blocks I n = C n C n Parke-Taylor factor: C n (1,..., n) = tr(ta 1T a 2...T an ) σ 1 2...σ n 1 n σ n 1 + non-cyclic Reduced Pfaffian: Pf (M) = ( 1)i+j σ ij Pf(M ij ij ), M = M(k i, ɛ i, σ i )

Loop Integrands from the Riemann Sphere

Upshot Loops Worldsheet models of QFT M = (0) + (1) +... = + + +... E (g) i = 0

Upshot Loops Worldsheet models of QFT M = (0) + (1) +... = + + +... E (g) i = 0 localisation on SE E i = + + +... E (g) i = 0

Scattering Equations on the Torus Genus 1 moduli space of torus Σ τ : τ τ z z + 1 z + τ τ τ + 1 1/τ - 1 2 1 2 Solve P = 2πi i k i δ(z z i )dz: ( θ 1 P µ = 2πi l µ + k (z z ) i) iµ dz, θ 1 (z z i ) i z 1

Scattering Equations on the Torus Genus 1 moduli space of torus Σ τ : τ τ z z + 1 z + τ τ τ + 1 1/τ - 1 2 1 2 Solve P = 2πi i k i δ(z z i )dz: ( θ 1 P µ = 2πi l µ + k (z z ) i) iµ dz, θ 1 (z z i ) i z 1 Scattering Equations on the torus: P 2 (z τ) = 0 Res zi P 2 (z) := 2k i P(z i ) = 0, P 2 (z 0 ) = 0.

The 1-loop Integrand [Adamo-Casali-Skinner, Casali-Tourkine] One-loop integrand of type II supergravity n M (1) SG = d 10 l dτ δ(p 2 (z 0 )) δ(k i P(z i )) M 1,n i=2 } {{ } Scattering Equations Z (1) (z i )Z (2) (z i ) spin struct. } {{ } I q, fermion correlator

The 1-loop Integrand [Adamo-Casali-Skinner, Casali-Tourkine] One-loop integrand of type II supergravity n M (1) SG = d 10 l dτ δ(p 2 (z 0 )) δ(k i P(z i )) M 1,n i=2 } {{ } Scattering Equations Z (1) (z i )Z (2) (z i ) spin struct. } {{ } I q, fermion correlator modular invariance: τ τ + 1 1/τ Scattering Equations: P 2 (z τ) = 0 checks: factorisation correct tensor structure at n = 4: t 8 t 8 R 4 Why rational function?

From the Torus to the Riemann Sphere Contour argument localisation on scattering equations contour integral argument in fundamental domain modular invariance: sides and unit circle cancel localisation on q e 2iπτ = 0 τ = i τ 1-1 2 2 Contour argument in the fundamental domain

From the Torus to the Riemann Sphere More explicitly: residue theorem One-loop integrand of type II supergravity n M (1) SG = d d l dτ δ(p 2 (z 0 )) δ(k i P(z i )) I q M 1,n i=2 σ + σ Residue theorem: elliptic curve nodal Riemann spere at q = 0.

From the Torus to the Riemann Sphere More explicitly: residue theorem One-loop integrand of type II supergravity n M (1) SG = d d l dτ δ(p 2 (z 0 )) δ(k i P(z i )) I q M 1,n i=2 σ + σ Residue theorem: elliptic curve nodal Riemann spere at q = 0. M (1) SG = 1 d 10 l dq ( ) n 2πi q 1 δ(k P 2 i P(z i )) I q (z 0 ) i=2 = d 10 1 n l dq P 2 (z 0 ) δ(q) δ(k i P(z i )) I 0 i=2 d 10 l n q=0 = δ(k l 2 i P(z i )) I 0. i=2

One-loop off-shell scattering equations On the nodal Riemann Sphere: l l n k i P = + σ σ l + σ σ l σ σ i dσ. Define S = P 2 ( i=1 l σ σ l l + σ σ l ) 2 dσ 2. σ + σ One-loop off-shell scattering equations Res σi S = k i P(σ i ) = k i l k i l σ i σ l + σ i σ l k i k j + = 0, σ i σ j j j i l k j Res σl S = = 0, σ l σ j l k j Res σl + S = = 0. σ l + σ j j

The integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ ( = δ l 2 Resσi S ) I vol (G) i,l } ± {{ } off-shell scattering equations type II sugra: I = I q 0, limit of g = 1 correlator manifestly rational upshot: widely applicable for supersymmetric and non-supersymmetric theories

The integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ ( = δ l 2 Resσi S ) I vol (G) i,l } ± {{ } off-shell scattering equations Puzzle: Only depends on 1/l 2, remainder l k i, l ɛ i,... Solution: Shifted integrands partial fractions: 1 i D i = i shift: D i l 2 formalised: Q-cuts 1 D i j i(d j D i ) [Baadsgaard et al]

The integrand One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ ( = δ l 2 Resσi S ) I vol (G) i,l } ± {{ } off-shell scattering equations Puzzle: Only depends on 1/l 2, remainder l k i, l ɛ i,... Solution: Shifted integrands partial fractions: 1 i D i = i shift: D i l 2 formalised: Q-cuts 1 D i j i(d j D i ) [Baadsgaard et al] Example: 1 l 2 (l + K) 2 = 1 l 2 (2l K + K 2 ) + 1 (l + K) 2 ( 2l K K 2 ) 1 ( ) 1 l 2 2l K + K 2 + 1 2l K + K 2

Integrands Double Copy again One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ(res l 2 σi S) I vol (G) i,l ± Supersymmetric: I sugra = 1 I (σ l + l ) 4 0 Ĩ 0 I sym = 1 I (σ l + l ) 4 0 I PT Building blocks Parke-Taylor: I PT = n i=1 σ l + l tr(t a 1T a 2...T an ) σ l + i σ i+1 i σ i+2 i+1...σ i+n l + non-cycl. Pfaffian: I 0 = r Pf (M r NS ) c d σ 2 l + l Pf (M 2 )

Integrands Double Copy again One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ(res l 2 σi S) I vol (G) i,l ± Supersymmetric: I sugra = 1 I (σ l + l ) 4 0 Ĩ 0 I sym = 1 I (σ l + l ) 4 0 I PT Non-supersymmetric I YM = ( r Pf (M r )) IPT NS I grav = ( r Pf (M r NS ))2 α (Pf (M 3 ) q 0) 2. Building blocks Parke-Taylor: I PT = n i=1 σ l + l tr(t a 1T a 2...T an ) σ l + i σ i+1 i σ i+2 i+1...σ i+n l + non-cycl. Pfaffian: I 0 = r Pf (M r NS ) c d σ 2 l + l Pf (M 2 ) α = 1 2 (d 2)(d 3) + 1: d.o.f. of B-field and dilaton

Integrands Double Copy again One-loop integrand on the nodal Riemann sphere d M (1) d l d n+2 σ = δ(res l 2 σi S) I vol (G) i,l ± Supersymmetric: I sugra = 1 I (σ l + l ) 4 0 Ĩ 0 I sym = 1 I (σ l + l ) 4 0 I PT Non-supersymmetric I YM = ( r Pf (M r )) IPT NS I grav = ( r Pf (M r NS ))2 α (Pf (M 3 ) q 0) 2. Building blocks Parke-Taylor: I PT = n i=1 σ l + l tr(t a 1T a 2...T an ) σ l + i σ i+1 i σ i+2 i+1...σ i+n l + non-cycl. Pfaffian: I 0 = r Pf (M r NS ) c d σ 2 l + l Pf (M 2 ) α = 1 2 (d 2)(d 3) + 1: d.o.f. of B-field and dilaton Checks: numerical, factorisation

The proof in a nutshell Recall: Poles (and residues) of M from boundary of moduli space M 0,n+2g SE s I

The proof in a nutshell Recall: Poles (and residues) of M from boundary of moduli space M 0,n+2g SE s I At one loop, there are two cases of interest: Separating: Q-cut:

The proof in a nutshell Recall: Poles (and residues) of M from boundary of moduli space M 0,n+2g SE s I At one loop, there are two cases of interest: Separating: Q-cut: Pole structure: ki 2 s I = 2l k I + ki 2 separating non-separating

The proof in a nutshell Q-cuts [Baadsgaard, Bjerrum-Bohr, Bourjaily, Caron-Huot, Damgaard, Feng] Starting from the Feynman diagram expansion, M (1) FD = N(l) D 1 (l)...d m (l), l l + η with η l = η k i = 0, η 2 = z. D i (l) D i (l) + z Cauchy Residue theorem appropriate shifts of l, remove forward limit singularities

The proof in a nutshell Q-cuts [Baadsgaard, Bjerrum-Bohr, Bourjaily, Caron-Huot, Damgaard, Feng] Starting from the Feynman diagram expansion, M (1) FD = N(l) D 1 (l)...d m (l), l l + η with η l = η k i = 0, η 2 = z. D i (l) D i (l) + z Cauchy Residue theorem appropriate shifts of l, remove forward limit singularities Q-cut expansion M (1) FD = I l I I = l+k I I M (0) I M (0) Ī l 2 (2l K I + K 2 I )

Question: Beyond one loop? M = + + +... E i (σ j ) = 0

Heuristics: Higher genus Riemann surface Σ g residue theorems contract g a-cycles nodal RS fixes g moduli remaining 2g 3 2g new marked points mod SL(2, C) 1-form P µ P = ω r (g) = (σ r + σ r ) dσ (σ σ r +)(σ σ r +) g r=1 l r ω (g) r + i k i dσ, σ σ i : basis of g global holomorphic 1-forms

The Scattering Equations The multiloop off-shell scattering equations are Res σa S = 0, A = 1,..., n + 2g g S(σ) := P 2 lr 2 ω 2 r + a rs (lr 2 + ls 2 )ω r ω s. r=1 r<s

The Scattering Equations The multiloop off-shell scattering equations are Res σa S = 0, A = 1,..., n + 2g g S(σ) := P 2 lr 2 ω 2 r + a rs (lr 2 + ls 2 )ω r ω s. r=1 r<s At two-loops: Factorisation: a 12 = 1 Two-loop integrand M (2) = 1 l 2 1 l2 2 M 0,n+4 d n+4 σ Vol G n+4 A=1 δ ( Res A S(σ A ) ) I, integrands known for n = 4 sym and sugra Similar complexity as tree amplitudes with n + 4 particles!

Conclusion and Outlook Summary: Worldsheet models describing scattering in massless QFTs moduli integrals localised on scattering equations framework to derive loop integrands on nodal Riemann spheres M = + + +... E i (σ j ) = 0 This formalism implies that n-point g-loop scattering amplitudes have the same complexity as n + 2g-point tree-level amplitudes! Outlook: sharpen ambitwistor string derivation at higher loop order model on nodal Riemann sphere integrals vs integrands?

Thank you!