The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method

Similar documents
An Example file... log.txt

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Framework for functional tree simulation applied to 'golden delicious' apple trees

A Study on the Analysis of Measurement Errors of Specific Gravity Meter


" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

Preparation of Hydrophilic Inorganic-Organic Hybrid Coating Solutions by Sol-Gel Method

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

Surface Modification of PTMS Particles with Organosilanes: TEOS-, VTMS-, and MTMS-Modified Particles

Examination paper for TFY4240 Electromagnetic theory

The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Surface modification of silica particles with organoalkoxysilanes through two-step (acid-base) process in aqueous solution

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

Dimethyl Ether Production using a Reactive Distillation Process

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

Formation and Surface Modification of Fe 3 O 4 Nanoparticles by Co-precipitation and Sol-gel Method

ETIKA V PROFESII PSYCHOLÓGA

Byung Kee Lee*, Young Hwa Jung**, and Do Kyung Kim

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Planning for Reactive Behaviors in Hide and Seek

This document has been prepared by Sunder Kidambi with the blessings of

A Study on Dental Health Awareness of High School Students

Optimal Control of PDEs

Vectors. Teaching Learning Point. Ç, where OP. l m n

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

An Introduction to Optimal Control Applied to Disease Models

Building Products Ltd. G Jf. CIN No. L26922KA199SPLC018990

!!"# $% &" ( )

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

TELEMATICS LINK LEADS

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Ceramic Processing Research

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Preparation of Fe 3 O 4 /SiO 2 Core/Shell Nanoparticles with Ultrathin Silica Layer

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Research of Application the Virtual Reality Technology in Chemistry Education

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

4.3 Laplace Transform in Linear System Analysis

Matrices and Determinants

Ceramic Processing Research

F O R SOCI AL WORK RESE ARCH

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance


DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Damping Ring Requirements for 3 TeV CLIC

Fast Nucleation for Silica Nanoparticle Synthesis in. Sol-Gel Method

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

A Theory of Universal AI

Preparation of monodisperse silica particles with controllable size and shape

R for beginners. 2 The few things to know before st. 8 Index 31

Effect of Aging Treatment on Shape Memory and Fatigue Properties in Ni-rich Ti-Ni Alloy

Loop parallelization using compiler analysis

SCOTT PLUMMER ASHTON ANTONETTI

Unit 3. Digital encoding

Advanced Treatment of Sewage Using a Magnetic Fluid Separation

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

Preparation of Fe 3 O 2 Nanostructures via Inverse Micelle Method and Study of Their Magnetic Properties for Biological Applications

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Optimization of a parallel 3d-FFT with non-blocking collective operations

Deposition of Titania Nanoparticles on Spherical Silica

Report on Preparation of Nanotemplates for mab Crystallization

SOLAR MORTEC INDUSTRIES.

A General Procedure to Design Good Codes at a Target BER

Synthesis of nano sized particles using supercritical fluids

Redoing the Foundations of Decision Theory

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

Organization of silica spherical particles into different shapes on silicon substrates

Synthesis and characterization of spherical silica nanoparticles by Sol-Gel method

Hydrothermal Synthesis of Titanium Dioxide Using Acidic Peptizing Agents and Their Photocatalytic Activity

Sample Exam 1: Chapters 1, 2, and 3

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

Synthesis and characterization of silica titania core shell particles

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

Influence of Nonionic Surfactant Concentration on Physical Characteristics of Resorcinol-Formaldehyde Carbon Cryogel Microspheres

Executive Committee and Officers ( )

. ffflffluary 7, 1855.

Ed S MArket. NarROW } ] T O P [ { U S E R S G U I D E. urrrrrrrrrrrv

Preparation of Spherical Silica Nanoparticles by Sol-Gel Method

New method for solving nonlinear sum of ratios problem based on simplicial bisection

Glasgow eprints Service

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

Evaluation of Cleanness and Physical Properties of Semi-Aqueous Cleaning Agents

POLYIMIDE BASED HYBRID NANOCOMPOSITES

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

â, Đ (Very Long Baseline Interferometry, VLBI)

Constructive Decision Theory

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q

Implicit in the definition of orthogonal arrays is a projection propertyþ

The materials used in this study were Iron (III) chloride hexahydrate (AR grade) and

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

ISO/IEC JTC1/SC2/WG2 N2

Transcription:

HWAHAK KONGHAK Vol. 41, No. 1, February, 2003, pp. 75-79 W/O SiO 2 425-791 1 1271 (2002 7 9, 2002 11 18 ) The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method Soon Hoi Kim, Ki Do Kim, Gun Yong Song and Hee Taik Kim Department of Chemical Engineering, Hanyang University, 1271, Sa 1-dong, Ansan 425-791, Korea (Received 9 July 2002; accepted 18 November 2002), (cyclohexane), (NH 4 OH) (NP-5) W/O TEOS!" # $%&' () *+,-./01. $% 2345 $%&6, R7(=/) 89: ;< = >?,-: @,< AB CDEF1. (G HI $% &6J 48 &6 # *+ : (),-! KLM, R7: NO5 25P Q, 89: ;<5 0.1 MP Q *+,- 2/ R" ST 23 UV W XM1. Y" ST 23 :Z[ \ (),-5 ]J,< AB(<^3.0%) _` a 10-30 nm : UV bcd XM1. Abstract To synthesize silica nanoparticles, water, organic solvent(cyclohexane), ammonium hydroxide, and surfactant (NP-5) were used as a microemulsion, and then TEOS(TetraEthylOrthoSilicate) as a precursor of silica was added to the solution. The effect of reaction time, R(=water/surfactant) value, and ammonia concentration on particle size and size distribution was observed. As a result, the silica particles with nano size were prepared at the condition of 48 hrs reaction time. It was also found that the optimal conditions for R value and ammonia concentration were 25 and 0.1 M, respectively. Therefore, the silica nanoparticles(10-30 nm) with narrow size distribution(<^3.0%) were formed by the above optimal conditions. Key words: W/O, Microemulsion, SiO 2, Nanoparticles 1. [1].!" #$% & '(), *+,, -., /012, 345 62 78 $9 :; <% $= &>, 6!1& -.%?@ A B CD <% E : 2 @;FG H I 6?(.J K$ LM!. NO, PQRS TU V" H (W.J XYZ[\ ] & ^ 2_(SiO 2 ) `[2]% aj #$ W bcd ef g'] hh, EMC(Epoxy Molding Compound), ACF(Anisotropic Conductive Film) 62 CMP(Chemical Mechanical Polishing) slurry <iw 6? YZS jk.!" % lm@ no 6 Rpq r XYZ[\ is #\ $8` Rpq, tu To whom correspondence should be addressed. E-mail: khtaik@hanyang.ac.kr q, v-wq[3] <G F x.!l v-w y/% zw {D?@R% N@G! }q % ~@?O Q [4].!#W } ƒ G! % Rp& H H # ˆ 8 Rp TŠ Jx :@G & +ŒiW 4[V WŽ W. %? $= D L, % #$ 100 nm![w b\ D % :@ @! % #$ x!#w!84 aj.j \.!& % CD ; % T! [\ I % Œ! & < :@! *[\ s % š8 H #$ ef *& < # ˆ 8 Rp B % aj& E @;G \. NO, pœ% ( žÿ pœg [H O!#W }% p@! ' pœg [\ p niw S Rp x & +ŒG H.!#W }q ª(micell)!f& «' $S! $= W, {D?@R k & :% %Š x ' G i % @ A @+ (S p [\ [5]. ef SiO 2 75

76 % Rp I W/O ± ²³iW / ˆ) 8 % @+ A #$ p, #$ µ <G p [$ ~ iw ¹. : 8º» ¼½ ee W/O!#W }G Rp![& aj / % ¾ [ W Rp I lm R m!. ' À Á{ #$! D, #$ /! [  ' (& à 100 /(W.J Ä iw ¹. ef, Å & W/O!#W }qg ][V ª % ^2_ %»@ {D?@R, xæ* Ç ÈÉ% {S Ê[Ë, pœg Ì À ^2_ S Rp[Ë. 2. 2-1. 1$.W cyclohexane(duksan), zx, NH 4 OH(Duksan) 62 {D?@RS ¾[V ^ (25 o C) W/O!#W }G ][Ë. ] {D?@RW& T! {D?@R4 polyoxyethylene-5-nonylphenyl ether(np-5, HLB=10, Aldrich)S ][ Ë.!#W }G ÍÎ Ï, ^2_ S Rp[$ Z u )W TEOS(tetraethylorthosilicate 99.99%, Aldrich)S, 62 {D? @R% «Ð c«ñ(duksan)g![ë. 2-2. 1$.4 cyclohexane {D?@R(NP-5) :, -.4 xæ* Ç ÈÉG ¾Š!#W }G ÍF TEOSS ¾[V ^ 48 ½ Ò'G [Ë. 62!#W } Æ S tu Ó$ ZŠ c«ñ :G ¾[V 7,000 rpm à 10 ½ Ô 2S [Ë.!" «Ð /G 2Õ 'Ö[Ëis V$ Rp & 70 o C 24 œp. Fig. 1!" ^Ø ÙS O ±ÚÛ. ' %Š @ & SEM(JSM-6330F, JEOL, Japan) %»8% Ê, 62 Dynamic Light Scattering (LPA-3,000, 3,100, Otsuka Co.) %Š a A ( µ /G [Ë. 3. 3-1. (morphology) Fig. 2& Å ^Ø Rp!#W }% ˆ(droplet)G ÜV Ý& Þ a ]Q!. ßß% #$& /[H& à, b 1 µm, #\& 5µm! áis, u) ºâ à 2-3 µm #$S H ã ˆ!»@Û. Fig. 3!" ˆ Ú ' ef ^2_»@& /G ÜVÝ& SEM ]Q!. ' pœi W& {D?@R :% T4 R(:/{D?@R) äg 25W, TEOS :% T4 H(:/TEOS) 20, 62 -.4 NH 3 % å(& 0.25 M!Û. Fig. 3 ±g SEM ]Q Fig. 2 ÜVH&!#W }G ÍÎ Ï TEOSS ¾, ' æw Ê À, / ßß «Ð[ Ô 2$S ][V ÌIç ^2_% SEM]Q!. (a)& ' 4 À ^2_ %»8iW!L& TEOS :% x Š no )(monomer)% @! b. % #$& ]Q ÜVH& èé /[$ I ê /(W ë A % @! RW!ìIHH 8 Ë. (b) (c)& ßß ' 10, 24 À ^2_ % È iw @ @+! ½ I& $W %»8 Tí[ #$& î 100-200 nmë. H ïiw (d)& ' 48 À ^2_ % SEM ]Q!. % # $& à 20-30 nmw.j b F! @ÛÏG ð4 x.!" ^Ø ñs ò[v ' 24!À& ó!8% @ [H % @+! { / å( º» 8 (ô[& iw ]õ. r SEM ]Q x ö! ^2_ & ' 4 Í /» S Ê x Ûi s, ' 10 a À @ x Š% Q iw ŒÙ % ë~!!ìihs» $$ b[ë. 62 ' 24 a À»% ^2_»@Ûis 24!À % @+! { I º» 8 (ô[& G Ê x Û. 3-2. R(/ )! :% å(s /(4 M) Ó {D?@R% å(s * Ós ^2 _ % ~@ ^ØG ^ [Ë. 6 ñ, Fig. 4 5 ßß x ö! Rä! n ef % #$ A Cø ùù [ / xø [& G Ê x.!& Osseo-Asare Fig. 1. Schematic diagram of experimental procedure. 41 1 2003 2 Fig. 2. Microscope image of microemulsion droplet.

SiO 77 2 Fig. 3. SEM micrographs of silica particles with reaction time (a) 4 hr, (b) 10 hr (c) 24 hr and (d) 48 hr. % ñ ½ [. ú, Rä! ûg aj x @! R W!ìIHH \ s, OH! % ½@! [V ³ ª ü TEOS% ) ýþ[v ª Úý @! ðÿ! \. r, û Rä & ³ ª {D?@R% p l oxyethylene 6! : S I TEOS% G ï \. 'D, Rä! aj & x @! ³ ª!ìIHs, : & ¼% ñ~[h 1 8! : % 8 / I I ³ ª x & TEOS% ch\. r OH!! -. ³ G ó?@* x TEOS% ½@G. ú K Rä & ßß% ³ ª ó x% TEOS ) [ @!? [\ 1 H x [7]. 6 Ravery[8]& :%!, ú Rä! [\ D oxyethylene ñ~! 8 ÒÙ[&» {D?@R% @ ý! 2 6 :! [& f f pw [D TEOS% x Ü![\!ìIQ [. % #$ &»@ { ª Úý % 8 b % 7! #. ú, {D?@R å(s ßß ô2 G L Rä% * % Úý:; u ô ( ôfq. ñ iw Rä%!#W }% p@ G p/[v Úý% 8 b (S. Úý 8 b % & ^2_ % ëg " &>!" ^2_ % ëiw 4 / å(!8! D #$& [\ [9].!& Fig. 4 5 % ñ ( x ö!, èï Rä! [$ b G L % #$& O [& G x.!l C ø ùù( [V Rä! x9 / S @[& G x. 6" Rä! / å(!8! D % #$& [ Cø ùù( [V ( µ 2[\ ± &>, Arriagada[6] Fig. 4. Effect of mole ratio R(H2O/Surfactant) on particle size.! 8$ ( ö! Úý 8 b % W ^2_ % ë Þ8iW 4 ñ ÁG x. ñ iw Rä! 254 H % #$ + bàis, ( µ D ( 1 2 iw IQ. "# $%&(NH OH) '(! 7 xæ* ÇÈÉ% å( * ee #$ A Cø ù Ù% *S ßß ±Ú& 6!. 6 ÜVH& èé xæ * ÇÈÉ% å( x9 % #$ A Cø ùù& Ù n G ð4 x Û.! ñ & Ï% iwý x. 3-3. Fig. 6 4 HWAHAK KONGHAK Vol. 41, No. 1, February, 2003

78 Fig. 5. Effect of mole ratio R(H 2 O/Surfactant) on standard deviation of particle size. Fig. 6. Effect of NH 3 concentration on particle size. %[\. ú, OH! x Š @ I -. ³ G [s _2@ ˆ Si ñ~g & a!.!" x Æ* ÇÈÉ å(% ee % #$ & Chang Fogler[10] % ñ [&> 6F xæ* ÇÈÉ% å( ee TEOS% È G /[V xš ( 8xS [Ë, 1ÙÁG!". r Arriagada Osseo-Asare[11]( K Rä û Rä ßß xæ* ÇÈÉ å(% 7G #I [Ëis 6F% Ý+ û Rä& x Š ^2_% @! $R&> xæ* Ç ÈÉ% å(s KV OH! % S 1(, x Š @% ( [Ë Ý+[Ë. 6" xæ* ÇÈÉ% å( [D / % x [& %$ -.% & l~ LM % # $. r K Rä& 8$ [Ëö! @! [$ ü pœiw xæ* ÇÈÉ% å( @+, xæ* ÇÈÉ% å( x9 'Q `[. ñ iw Å ^Ø& 0.1 M L % #$(à 12 nm) + b à, ( µ (2.1%) r + Æ!ÛÏG x Û. 4. W/O!#W }qg ][V ª % ^2_ % R p ' pœf%(', Rä(=:/{D?@R), xæ* ÇÈÉ % å() 7 ^Øñ, Ï% ñ(g ÌG x Û. (1) ' ee ^2_ %» S TÒŠ Å ñ, 4 Í& /» S Ê x ÛHÍ, 10 a À& @ x ŠW 4 %»!ìi). 62 24 a À TW»% ^2_»@Ûis 24!À % @+! { I º» 8 (ô[& G Ê x Û. (2) R(=:/{D?@R) ä% * ee % #$ ( µs / ñ, Rä! x9 a A ( µ& È [ / xø!8& [Ë&>, Rä! 254 HŒ % #$ + bàis, ( µ D( 12 G x Û. (3) xæ* ÇÈÉ% å( * ee a A ( µ% *S / ñ xæ* ÇÈÉ% å( x9 a A ( µ& È [Ëis, xæ* ÇÈÉ% å( 0.1 M L % #$(à 12 nm) + bà, ( µ(2.1%) r + Æ!ÛÏG x Û. Fig. 7. Effect of NH 3 concentration on standard deviation of particle size. NH 3 +H 2 O=NH + 4 +OH (1) (1) K xæ* ÇÈÉ% å( x Š %Š OH %!! @& _!. xæ* ÇÈÉ% xš %Š & OH! % 7iW 4Š % #$& xæ* ÇÈÉ% å( 41 1 2003 2 1. Edelstein, A. S., Nano materials: Synthesis, Properties and Applications, Philadelphia(1996). 2. Park, S. K., Kim, K. D. and Kim, H. T., Preparation of Silica Nanoparticles: Determination of the Optimal Synthesis Conditions for Small and Uniform Particles, Colloids and Surfaces A., 197, 7-17(2002). 3. Rajesh Kumar, S., Suresh, C. and Asha, K., Phase Transformation in Sol-Gel Titania Containing Silica, Materials Letters., 38, 161-166(1999). 4. Hiemenz, P. C., Principles of Colloid and Surface Chemistry, Marcel Dekker Inc., New York(1986). 5. Roth, M. and Hempelmann, R., Synthesis of Nanocrystalline NH4MnF3. A Preparation Route To Produce Size-Controlled Precipitates via Microemulsion Systems, Chem. Mater., 10, 78-82(1998). 6. Osseo-Asare, K. and Arriagada, F. J., Synthesis of Nanosize Silica in a Nonionic Water-in-Oil Microemulsion: Effects of the Water/Surfactant Molar Ratio and Ammonia Concentration, J. Colloid and Interface Science, 211, 210-220(1999). 7. Iler, R. K., The Chemistry of Silica, Wiley, New York(1979).

SiO 2 79 8. Gang, D. G., Silica Nanoparticles Prepared by W/O Microemulsion Method at Acid/Base Conditions, M. S. Dissertation, Hanyang Univ., Seoul(2000). 9. Brinker, C. J. and Scherer, G. W., Sol-Gel Science, Academic Press, San Diego(1990). 10. Chang, C. L. and Fogler, H. S., Controlled Formation of Silica Particles from Tetraethyl Orthosilicate in Nonionic Water-in-Oil Microemulsions, Langmuir, 13, 3295-3307(1997). 11. Arriagada, F. J. and Osseo-Asare, K, Controlled Hydrolysis of Tetraethoxysilane in a Nonionic Water-in-oil Microemulsion: A Statistical Model of Silica Nucleation, Colloids and Surfaces A., 154, 311-326 (1994). HWAHAK KONGHAK Vol. 41, No. 1, February, 2003