Stoichiometry ( ) ( )

Similar documents
St. John s College High School Mr. Trubic AP Midterm Review Packet 1

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Review Packet #1

Chemistry Stoichiometry and Heat Exam (ver.1) Mr. Thaler. Please do not write on this exam. Mark your answers on the scantron only.

O'DONEL HIGH SCHOOL CHEMISTRY 2202

c. K 2 CO 3 d. (NH 4 ) 2 SO 4 Answer c

Name AP Chemistry September 30, 2013

AP Chemistry Multiple Choice Questions - Chapter 4

AP Chemistry: Chapter 3 Notes Outline

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

Chapter 1 IB Chemistry Warm Ups Stoichiometry. Mrs. Hilliard

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

Stoichiometry. Percent composition Part / whole x 100 = %

Example Exercise 10.1 Interpreting Chemical Equation Calculations

TYPES OF CHEMICAL REACTIONS

AP WORKSHEET 4s: Calculations Summary

WORKSHEET Mole Fraction

Chapter 4. Reactions in Aqueous Solution

Name Period CH 180 Practice Test: Chapters 3 and 4

IGCSE (9-1) Edexcel - Chemistry

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

TOPIC 9. CHEMICAL CALCULATIONS III - stoichiometry.

CHAPTER 9 CHEMICAL QUANTITIES

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

AP Chemistry Summer Assignment

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

Stoichiometric Calculations

Mass Relationships in Chemical Reactions

AP Chemistry Test (Chapter 3) Multiple Choice and FIB (40%)

Problem Set III Stoichiometry - Solutions

Stoichiometric Calculations

UNIT 1 Chemical Reactions Part II Workbook. Name:

Worksheet 1: REPRESENTATIVE PARTICLES

Chemistry CP Putting It All Together II

Name Date Class THE ARITHMETIC OF EQUATIONS

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Unit 4: Reactions and Stoichiometry

Unit Two Worksheet WS DC U2

Counting by mass: The Mole. Unit 8: Quantification of Chemical Reactions. Calculating molar mass. Particles. moles and mass. moles and particles

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Practice Problems: Set #3-Solutions

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

JOHN BURKE HIGH SCHOOL

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3?

Unit 6: Mole Assignment Packet Period:

Chem 1A Dr. White Fall Handout 4

Note: coefficients of 1 can be omitted, and are only shown here for clarity. S 2 O 6 charge 0 Check: Al 4 Mn 3 O 6. charge 0. Pb 2 O 4.

Chapter 9: Stoichiometry The Arithmetic ti Of Equations

TOPIC 4: THE MOLE CONCEPTS

Name. Practice Test 2 Chemistry 111

2.1.3 Amount of substance

Chapter 3: Stoichiometry

Name: Unit 9- Stoichiometry Day Page # Description IC/HW

Reaction Stoichiometry and Solution Concentration Q1. FeS(S) + 2HCl(aq) FeCl2(S) + H2S(g) Q2. C6H10(g) + O2(g) CO2(g) + H2O(g) Q3.

Chem 130 Name Exam 2 October 11, Points Part I: Complete all of problems 1-9

CHEM 60 Spring 2016 Exam 2 Ch 5-8, 100 points total.

AP CHEMISTRY THINGS TO KNOW

Learning Objectives Progress Tracker Test Date: 6.1 Stoichiometry balanced chemical equation mole ratios theoretical yield limiting reagent

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Chemical Quantities: Stoichiometry and the Mole

Chapter 4 Chemical Quantities and Aqueous Reactions

Unit 7: Stoichiometry Homework Packet (85 points)

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Ch 4-5 Practice Problems - KEY

Stoichiometry. Homework EC. cincochem.pbworks.com. Academic Chemistry DATE ASSIGNMENT

Unit VI Stoichiometry. Applying Mole Town to Reactions

UNIT 9 - STOICHIOMETRY

The Mole. Relative Atomic Mass Ar

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Chapter 3. Mass Relationships in Chemical Reactions

Chemical Reactions: An Introduction

2017 SUMMER ASSIGNMENT AP CHEMISTRY

Quantitative chemistry Atomic structure Periodicity

Topic 7: The Mole Concept Relating Mass to Numbers of Atoms

Chapter 3 Stoichiometry

Name period AP chemistry Unit 4 worksheet

UNIT 9 - STOICHIOMETRY

Mass Relationships in Chemical Reactions

Moles Revisited Name Date Molar Mass How do you calculate the formula mass of a compound? Examples Potassium fluoride Strontium nitrate Aluminum nitri

Chem II - Wed, 9/14/16

Outcomes: Interpret a balanced chemical equation in terms of moles, mass and volume of gases. Solve stoichiometric problems involving: moles, mass,

Exam #5 May 2, Closed Book Exam - No books or notes allowed. All work must be shown for full credit. You may use a calculator.

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

How many carbon atoms are in 1 mol of sucrose (C 12 H 22 O 11 )? A) 7.23 x B) 6.02 x C) 5.02 x D) 12 E) 342

Chapter 3: Chemical Reactions and the Earth s Composition

CH 221 Chapter Four Part II Concept Guide

9.) A chloride of rhenium contains 63.6% rhenium. What is the formula of this compound? (ReCl 3 )

Chem. I Notes Ch. 11 STOICHIOMETRY NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

SCH4U Chemistry Review: Fundamentals

Stoichiometry CHAPTER 12

IGCSE Double Award Extended Coordinated Science

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

4) Tetrasulfur trioxide. 5) barium fluoride. 6) nitric acid. 7) ammonia

Chemistry Saturday Study Session 1, Class 1--Stoichiometry. Page 1 of 6

CHAPTER 12. Chemists use balanced to calculate how much reactant is needed or product is formed in a reaction. + 3H 2NH. Hon Chem 12.

Moles. Balanced chemical equations Molar ratios Mass Composition Empirical and Molecular Mass Predicting Quantities

American International School of Johannesburg. Quantitative Revision Questions II

4. Magnesium has three natural isotopes with the following masses and natural abundances:

Transcription:

Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) / 1 mole 2. Limiting Reactants Find moles of one product the least amount shows the limiting reactant. The other reactant is in excess. 3. Empirical and Molecular Formula Calculations Note: if molar ration is 0.5, multiply all molar ratios by 2; if 0.333, multiply all molar ratios by 3 Molecular Formula Calculation Empirical Formula Calculation by Combustion ( ) o Then follow the Empirical Calculation directions.

Stoichiometry Problem Set Molar Calculations 1. Calculate the following quantities: a. Mass, in grams, of 0.50 mol of Ca(OH) 2 b. Number of moles of in 50.0 g of NH 4 Cl c. Number of molecules of 0.25 mol of NH 3 d. Number of moles of carbon in 2.50 mol of C 4 H 10 e. Molarity of 0.05 mol of KMnO 4 in 400 ml of water. f. Mass, in grams, of NaOH in 500mL of 0.05 M solution. g. Volume, in ml, of 11.5 M HCl solution needed to make a 500mL solution of 0.5 M. NaN 3 (s) Na (s) + N 2 (g) 2. Balance the reaction and calculate the following quantities: a. Number of moles of nitrogen gas when 1.50 mol of NaN 3. b. How many grams of NaN 3 are needed to produce 10.0 g of nitrogen gas. c. If NaN 3 has a density of 1.25 g/l, how many grams of solid sodium are produced when 750 ml of NaN 3 is used? NaHCO 3 (s) + H 2 SO 4 (aq) Na 2 SO 4 (aq) + H 2 O (l) + CO 2 (g) 3. Balance the reaction and calculate the following quantities: a. If 0.25 moles of NaHCO 3 is used in this reaction, how many total moles of products are formed? b. If excess NaHCO 3 is added to 0.500 liters of 2.00 M H 2 SO 4, how many moles of carbon dioxide are formed? c. If 100mL of 6.0 M H 2 SO 4 was spilled, what is the minimum mass of NaHCO 3 that must be used to neutralize this spill? Why would we use NaHCO 3 and not water to neutralize the spill? 2 NaOH (s) + CO 2 (g) Na 2 CO 3 (s) + H 2 O (l) 4. Calculate the following quantities based on the reaction above: a. If 1.50 moles of NaOH and 1.00 moles of CO 2 are allowed to react, which is the limiting reactant? b. How many maximum moles of Na 2 CO 3 are produced? What is the maximum mass in grams produced of Na 2 CO 3? c. How many moles of excess reactant remain after the completion of the reaction? 5. A hydrocarbon sample with a mass of 8 grams underwent combustion, producing 22 grams of carbon dioxide. If all of the carbon initially present in the compound was converted to carbon dioxide, what was the percent of carbon, by mass, in the hydrocarbon sample? (A) 25% (B) 33% (C) 50% (D) 66% (E) 75%

6. What is the mass of oxygen in 37 grams of calcium hydroxide (Ca(OH) 2 ) (MW=74)? (A) 16 grams (B) 24 grams (C) 32 grams (D) 40 grams (E) 48 grams C 3 H 8 + 5 O 2 3 CO 2 + 4 H 2 O 7. If approximately 30 liters of CO 2 were produced at STP and all of the carbon in the CO 2 came from the propane, what was the mass of the propane sample? (A) 10 grams (B) 20 grams (C) 35 grams (D) 40 grams (E) 60 grams 8. A pure sample of KClO 3 is found to contain 71 grams of chlorine atoms. What is the mass of the sample? (A) 122 grams (B) 170 grams (C) 209 grams (D) 245 grams (E) 293 grams C 3 H 7 OH + O 2 CO 2 + H 2 O 9. One mole of C 3 H 7 OH underwent combustion as shown in the reaction above. How many moles of oxygen were required for the reaction? (A) 2 moles (B) 3 moles (C) 7/2 moles (D) 9/2 moles (E) 5 moles CH 4 + 2 O 2 CO 2 + 2 H 2 O 10. If 16 grams of CH 4 reacts with 16 grams of O 2 in the reaction shown above, which of the following will be true? (A) The mass of H 2 O formed will be twice the mass of CO 2 formed. (B) Equal mass of H 2 O and CO 2 will be formed. (C) Equal numbers of moles of H 2 O and CO 2 will be formed. (D) The limiting reagent will be CH 4. (E) The limiting reagent will be O 2.

2 ZnS (s) + 3 O 2 (g) 2 ZnO (s) + 2 SO 2 (g) 11. If the reaction above took place at standard temperature and pressure, what was the volume of O 2 (g) required to produced 40.0 grams of ZnO (s)? (A) (B) (C) (D) (E) Empirical and Molecular Formula Calculations 12. The formula of a specific hydrate is Na 2 CO 3 x H 2 O. When a 2.558 gram sample of this hydrate is heated at 25 C, all of the water of hydration is lost, leaving 0.948 g of Na 2 CO 3. Determine the molecular formula of this hydrate. Mass (g) Initial Compound 5.061 g Compound after heating 2.950 g Compound after more heating 2.471 g Compound after more heating 2.472 g Compound after more heating 2.472 g 13. The formula for an unknown hydrate is MgSO 4 x H 2 O is decomposed in the laboratory as shown in the table above. What is the mass of the compound after heating? Explain. What are the moles of water present in the hydrate? 14. Determine the empirical formula for the following compounds given: a. 0.0130 mol C, 0.0390 mol H, and 0.0065 mol O b. 11.66 g of Fe and 5.01 g of oxygen c. 40% C, 6.67% H, 53.3% O by mass. d. 0.104 mol K, 0.052 mol C, and 0.156 mol O e. 5.28 g Sn and 3.37 g F f. 87.5% N and 12.5% H by mass. 15. Determine the empirical and molecular formula for the following compounds given: g. Hydrocarbon with 92.3% C by mass and a molar mass of 104 g/mol. h. 49.5% C, 5.15% H, 28.9%, N, and O by mass with a molar mass of 195 g/mol. i. 35.51% C, 4.77% H, 37.85% O, 8.29% N, and 13.60% Na with a molar mass of 169 g/mol. j. 75.69% C, 8.80% H, and O by mass with a molar mass of 206 g/mol. k. 58.55% C, 13.81% H, 27.40% N by mass with a molar mass of 102.2 g/mol. l. 59.0% C, 7.1% H, 26.2% O, and 7.7% N by mass with a molecular weight of 180.

16. A 10.00 gram sample of an organic compound is combusted and produces 28.204 of CO 2 and 11.538 g of H 2 O. Determine the empirical and molecular formula of this compound if its molar mass is 156.0 g/mol. 17. A 2.78 g sample of an organic compound is combusted and produces 6.32 g of CO 2 and 2.58 g of H 2 O. Determine the empirical formula of this compound and without any calculations, show how to determine the molecular formula. 18. If a 1 M sample of Fe 2 O 3 x H 2 O is found to contain 108 grams of water, what is the molecular formula for the sample? (A) Fe 2 O 3 H 2 O (B) Fe 2 O 3 3 H 2 O (C) Fe 2 O 3 6 H 2 O (D) Fe 2 O 3 10 H 2 O (E) Fe 2 O 3 12 H 2 O 19. Rutile, an oxide of titanium has 60% titanium and 40% oxygen in its chemical formula. What is the empirical formula for rutile? (A) TiO (B) TiO 2 (C) Ti 2 O (D) Ti 2 O 3 (E) Ti 3 O 2 20. A compound containing only sulfur and oxygen is 40% sulfur by weight. What is the empirical formula for the compound? (A) SO (B) SO 2 (C) SO 3 (D) S 2 O (E) S 3 O 21. A compound containing carbon, hydrogen, and oxygen has 60% carbon, 8% hydrogen, and 32% oxygen by mass. What is the empirical formula for the compound? (A) C 60 H 8 O 32 (B) C 7 H 1 O 4 (C) C 3 H 8 O 4 (D) C 5 H 8 O 2 (E) C 4 H 6 O 2

Free Response: 22. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess nitric acid and then precipitating silver as AgCl. First the student prepares 50. ml of 6 M HNO 3. (a) The student is provided with a stock solution of 16 M HNO 3, two 100 ml graduated cylinders that can be read to ±1 ml, a 100 ml beaker that can be read to ±10 ml, safety goggles, rubber gloves, a glass stirring rod, a dropper, and distilled H 2 O. (i) Calculate the volume, in ml, of 16 M HNO 3 that the student should use for preparing 50. ml of 6 M HNO 3. (ii) Briefly list the steps of an appropriate and safe procedure for preparing the 50. ml of 6 M HNO 3. Only materials selected from those provided to the student (listed above) may be used. (iii) Explain why it is not necessary to use a volumetric flask (calibrated to 50.00 ml ± 0.05mL) to perform the dilution. (iv) During the preparation of the solution, the student accidentally spills about 1 ml of 16 M HNO 3 on the bench top. The student finds three bottles containing liquids near the spill: a bottle of distilled water, a bottle of 5 percent NaHCO 3 (aq), and a bottle of saturated NaCl (aq). Which of the liquids is best to use in cleaning up the spill? Justify your choice. Then the student pours 25 ml of the 6 M HNO 3 into a beaker and adds a 0.6489 g sample of the alloy. After the sample completely reacts with the acid, some saturated NaCl (aq) is added to the beaker, resulting in the formation of an AgCl precipitate. Additional NaCl (aq) is added until no more precipitate is observed to form. The precipitate is filtered, washed, dried, and weighed to constant mass in a filter crucible as shown in the table below. Mass of sample of copper-silver alloy Mass of dry filter crucible Mass of filter crucible and precipitate (first weighing) Mass of filter crucible and precipitate (second weighing) Mass of filter crucible and precipitate (third weighing) 0.6489 g 28.7210 g 29.3587 g 29.2599 g 29.2598 g (b) Calculate the number of moles of AgCl precipitate collected. (c) Calculate the mass percent of silver in the alloy of copper and silver. 23. The table below shows three common forms of copper ore. Iron Ore # Empirical Formula Percent by Weight Copper Sulfur Iron 1 Cu 2 S?? 0 2? 34.6 34.9 30.5 3? 55.6 28.1 16.3 (a) What is the percent by weight of copper in Cu 2 S? (b) What is the empirical formula of Iron Ore #2? (c) If a sample of Iron Ore #3 contains 11.0 grams of iron, how many grams of sulfur does it contain? (d) Cu can be extracted from Cu 2 S by the following process:

3 Cu 2 S + 3 O 2 3 SO 2 + 6 Cu If 3.84 grams of O 2 are consumed in the process, how many grams of Cu are produced?