Astrodynamics (AERO0024)

Similar documents
Astrodynamics (AERO0024)

Astrodynamics (AERO0024)

IAU 2006 NFA GLOSSARY

Astrodynamics (AERO0024)

On Sun-Synchronous Orbits and Associated Constellations

Satellite Communications

Orbits in Geographic Context. Instantaneous Time Solutions Orbit Fixing in Geographic Frame Classical Orbital Elements

On the definition and use of the ecliptic in modern astronomy

Fundamentals of Astrodynamics and Applications

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

Fundamentals of Satellite technology

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class.

Modern Navigation. Thomas Herring

Geometry of Earth Sun System

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Astrodynamics (AERO0024)

Astrodynamics (AERO0024)

The Position of the Sun. Berthold K. P. Horn. necessary to know the position of the sun in the sky. This is particularly

Astronomy. The Seasons

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT I PART A

Astrodynamics (AERO0024)

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime

Orbit Representation

The sky and the celestial sphere

Third Body Perturbation

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky

Introduction to Astronomy

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS

Greetings, All things require introduction and so we begin with ours,

Dynamics of the Earth

Lecture Module 2: Spherical Geometry, Various Axes Systems

Earth-Centered, Earth-Fixed Coordinate System

2 Conventional Celestial Reference System and Frame

Orbit Propagatorr and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position.

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Earth Science, 13e Tarbuck & Lutgens

Prof. E. Calais Purdue University - EAS Department CIVL 3273

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles:

The conversion of Universal Time to Greenwich Mean Sidereal Time is rigorously possible and is given by a series development with time defined by

Keplerian Elements Tutorial

PW-Sat two years on orbit.

Elements of Geodesy. Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

PHYSICS 1030 Homework #9

Astrodynamics (AERO0024)

Dynamics and Control of Lunisolar Perturbations for. Highly-Eccentric Earth-Orbiting Satellites

Orbit Definition. Reference Vector. Vernal (March) Equinox Vector. Sun Vector

Astrodynamics (AERO0024)

Principles of Global Positioning Systems Spring 2008

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Satellite meteorology

PHYSICS 1030 Homework #9

Revision of the physical backgrounds of Earth s rotation

aberration (of light): aberration, annual: aberration, diurnal: aberration, E-terms of: aberration, elliptic: aberration, planetary:

Lecture 2c: Satellite Orbits

Celestial Mechanics and Satellite Orbits

Time, coordinates and how the Sun and Moon move in the sky

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener

Astrodynamics (AERO0024)

Coordinates on the Sphere

CALCULATION OF POSITION AND VELOCITY OF GLONASS SATELLITE BASED ON ANALYTICAL THEORY OF MOTION

CELESTIAL COORDINATES

AS3010: Introduction to Space Technology

Introduction To Modern Astronomy I: Solar System

Astrodynamics (AERO0024)

Observational Astronomy - Lecture 5 The Motion of the Earth and Moon Time, Precession, Eclipses, Tides

UNIT 6 CELESTIAL SPHERE AND EQUINOCTIAL SYSTEM OF COORDINATES

These notes may contain copyrighted material! They are for your own use only during this course.

Rotation matrix from the mean dynamical equator and equinox at J to the ICRS

Oberth: Energy vs. Momentum

Workshop on GNSS Data Application to Low Latitude Ionospheric Research May Fundamentals of Satellite Navigation

Orbital Mechanics. CTLA Earth & Environmental Science

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423

NAVIGATION & MISSION DESIGN BRANCH

M2 GLOSSARY aphelion: the point in an orbit that is the most distant from the Sun. apocenter: the point in an orbit that is farthest from the origin o

MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION

The Celestial Sphere. GEK1506 Heavenly Mathematics: Cultural Astronomy

PHAS 1511: Foundations of Astronomy

Test 1 Review Chapter 1 Our place in the universe

Compass Star Tracker for GPS Applications

Chapter 1: Discovering the Night Sky. The sky is divided into 88 unequal areas that we call constellations.

ORBIT DESIGN AND SIMULATION FOR KUFASAT NANO- SATELLITE

Principles of the Global Positioning System Lecture 04"

imin...

lightyears observable universe astronomical unit po- laris perihelion Milky Way

Question 1. What motion is responsible for the apparent motion of the constellations (east to west) across the sky?

Reference system and non-rotating origin: the NRO for the rest of us Olivier de Viron, Véronique Dehant, and Nicole Capitaine

Ay 1 Lecture 2. Starting the Exploration

The 3D representation of the new transformation from the terrestrial to the celestial system.

FUNDAMENTAL ASTRONOMY

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Transcription:

Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L)

Motivation: Space We need means of describing orbits in three-dimensional space. Example: Earth s oblateness YES! Atmosphere NO! 2

3-D Space: Example Two-body propagator J2 propagator 3

3-D Space: Example Two-body propagator Two-body + drag 4

Complexity of Coordinate Systems: STK 5

3. The Orbit in Space and Time? 3.1 Inertial frames 3.2 Coordinate systems ω i α δ a θ e Ω 3.3 Coordinate types 6

3. The Orbit in Space and Time? 3.1 Inertial frames 3.1.1 ICRS 3.1.2 ICRF ω i α δ a θ e Ω 7

Importance of Inertial Frames An inertial reference frame is defined as a system that is neither rotating nor accelerating relative to a certain reference point. Suitable inertial frames are required for orbit description (remember that Newton s second law is to be expressed in an inertial frame). An inertial frame is also an appropriate coordinate system for expressing positions and motions of celestial objects. 3.1.1 ICRS 8

Reference System and Reference Frame Distinction between reference system and a reference frame: 1. A reference system is the complete specification of how a celestial coordinate system is to be formed. For instance, it defines the origin and fundamental planes (or axes) of the coordinate system. 2. A reference frame consists of a set of identifiable points on the sky along with their coordinates, which serves as the practical realization of a reference system. 3.1.1 ICRS 9

International Celestial Reference System (ICRS) The ICRS is the reference system of the International Astronomical Union (IAU) for high-precision astronomy. Its origin is located at the barycenter of the solar system. Definition of non-rotating axes: 1. The celestial pole is the Earth s north pole (or the fundamental plane is the Earth's equatorial plane). 2. The reference direction is the vernal equinox (point at which the Sun crosses the equatorial plane moving from south to north). 3. Right-handed system. 3.1.1 ICRS 10

Vernal Equinox? Vallado, Kluwer, 2001. The vernal equinox is the intersection of the ecliptic and equator planes, where the sun passes from the southern to the northern hemisphere (First day of spring in the northern hemisphere). Today, the vernal equinox points in the direction of the constellation Pisces, whereas it pointed in the direction of the constellation Ram during Christ s lifetime. Why? 11

Rotation Axis: Lunisolar Precession Because of the gravitational tidal forces of the Moon and Sun, the Earth s spin axis precesses westward around the normal to the ecliptic at a rate of 1.4 /century. The Earth's axis sweeps out a cone of 23.3 degrees in 26000 years. ω E F: dominant force on the spherical mass. ecliptic f 2 f 1 F f 1, f 2 : forces due to the bulging sides; f 1 > f 2, which implies a net clockwise moment. 3.1.1 ICRS 12

Rotation Axis: Lunisolar Precession Competition between two effects: 1. Gyroscopic stiffness of the spinning Earth (maintain orientation in inertial space). T=26000 years 2. Gravity gradient torque (pull the equatorial bulge into the plane of the ecliptic). 3.1.1 ICRS 13

Rotation Axis: Nutation The obliquity of the Earth varies with a maximum amplitude of 0.00025 over a period of 18.6 years. This nutation is caused by the precession of the Moon s orbital nodes. They complete a revolution in 18.6 years. 3.1.1 ICRS 14

Yet Another Disturbance: Polar Motion Movement of Earth s rotation axis across its surface. Difference between the instantaneous rotational axis and the conventional international origin (CIO a conventionally defined reference axis of the pole's average location over the year 1900). The drift, about 20 m since 1900, is partly due to motions in the Earth's core and mantle, and partly to the redistribution of water mass as the Greenland ice sheet melts. 3.1.1 ICRS 15

Yet Another Disturbance: Polar Motion CIO: fixed with respect to the surface of the Earth CEP: periodic motion (celestial ephemeris pole) 3.1.1 ICRS 16

Complicated Motion of the Earth 3.1.1 ICRS 17

Need To Specify a Date Because the ecliptic and equatorial planes are moving, the coordinate system must have a corresponding date: "the pole/equator and equinox of [some date]". For ICRS, the equator and equinox are considered at the epoch J2000.0 (January 1, 2000 at 11h58m56s UTC). 3.1.1 ICRS 18

ICRS in Summary Quasi-equatorial coordinates at the solar system barycenter! [ in the framework of general relativity ] An object is located in the ICRS using right ascension and declination But how to realize ICRS practically? 3.1.1 ICRS 19

Previous Realizations: B1950 and J2000 B1950 and J2000 were considered the best realized inertial axes until the development of ICRF. They exploit star catalogs (FK4 and FK5, respectively) which provide mean positions and proper motions for classical fundamental stars (optical measurements): FK4 was published in 1963 and contained 1535 stars in various equinoxes from 1950 to 1975. FK5 was an update of FK4 in 1988 with new positions for the 1535 stars. STK 3.1.2 ICRF 20

Fifth Fundamental Catalog (FK5), available on the web site

Star Catalogs: Limitations and Improvement 1. The uncertainties in the star positions of the FK5 are about 30-40 milliarcseconds over most of the sky. 2. A stellar reference frame is time-dependent because stars exhibit detectable motions. 1. Uncertainties of radio source positions are now typically less than one milliarcsecond, and often a factor of ten better. 2. Radio sources are not expected to show measurable intrinsic motion. 3.1.2 ICRF 22

Fifth Fundamental Catalog (FK5), available on the web site

ICRF is the Current Realization of ICRS Since 1998, IAU adopted the International Celestial Reference Frame (ICRF) as the standard reference frame: quasi-inertial reference frame with barely no time dependency. It represents an improvement upon the theory behind the J2000 frame, and it is the best realization of an inertial frame constructed to date. 3.1.2 ICRF 24

Very Long Baseline Interferometry STK 3.1.2 ICRF 25

Further Reading on the Web Site 3.1.2 ICRF 26

Formal Definition of ICRS It is defined by the measured positions of 212 extragalactic sources (mainly quasars). 1. Its origin is located at the barycenter of the solar system through appropriate modeling of VLBI observations in the framework of general relativity. 2. Its pole is in the direction defined by the conventional IAU models for precession (Lieske et al. 1977) and nutation (Seidelmann 1982). 3. Its origin of right ascensions was implicitly defined by fixing the right ascension of the radio source 3C273B to FK5 J2000 value. 3.1.2 ICRF 28

3. The Orbit in Space and Time? 3.2 Coordinate systems ω i α δ a θ e Ω 29

Coordinate Systems Now that we have defined an inertial reference frame, other reference frames can be defined according to the needs of the considered application. Coordinate transformations between two reference frames involve rotation and translation. What are the possibilities for a satellite in Earth orbit? 3.2 Coordinate systems 30

Geocentric Inertial (ECI) A geocentric-equatorial system is clearly convenient. The geocentric celestial reference frame (GCRF) is the geocentric counterpart of the ICRF and is the standard inertial coordinate system for the Earth. 3.2 Coordinate systems 31

Geocentric Fixed (ECEF) Origin at the Earth s center. z-axis is parallel to Earth s rotation vector. x-axis passes through the Greenwich meridian. y-axis: right-handed set. For ground tracks and force computation. 3.2 Coordinate systems 32

ECEF 3.2 Coordinate systems 33

ECEF-ECI Transformation It includes precession, nutation, and rotation effects, as well as pole wander and frame corrections. ECEF e.g., ITRF PM ST N P ECI e.g., FK5 3.2 Coordinate systems 34

ECEF-ECI Transformation Vallado, Fundamental of Astrodynamics and Applications, Kluwer, 2001. 35

ECEF-ECI Transformation Simplified transformation Precession, nutation, polar motion ignored 3.2 Coordinate systems 36

Topocentric On the Earth s Surface SEZ or NEZ For satellite tracking 3.2 Coordinate systems 38

Yet More Coordinate Systems! Satellite coordinate system For ADCS Perifocal coordinate system Heliocentric coordinate system Natural frame for an orbit (z is zero) For interplanetary missions Non-singular elements For particular orbits 3.2 Coordinate systems 39

3. The Orbit in Space and Time? ω i α δ a θ e Ω 3.3 Coordinate types 40

Cartesian and Spherical 1. Cartesian: for computations 2. Spherical: azimuth and elevation (for ground station) right ascension and declination (for astronomers) ˆK Ĵ Î 3.3 Coordinate types 41

Cartesian Spherical r XIˆ YJˆ ZKˆ ruˆ r uˆ cos cos Iˆ cos sin Jˆ sin Kˆ r 3.3 Coordinate types 42

Orbitron http://www.stoff.pl/ 43

Orbitron: Close-Up 3.3 Coordinate types 44

Orbital (Keplerian) Elements For interpretation r and v do not directly yield much information about the orbit. We cannot even infer from them what type of conic the orbit represents! Another set of six variables, which is much more descriptive of the orbit, is needed. 3.3 Coordinate types 45

6 Orbital (Keplerian) Elements 1. e: shape of the orbit 2. a: size of the orbit 3. i: orients the orbital plane with respect to the ecliptic plane 4. Ω: longitude of the intersection of the orbital and ecliptic planes 5. ω: orients the semi-major axis with respect to the ascending node 6. ν: orients the celestial body in space definition of the ellipse definition of the orbital plane orientation of the ellipse within the orbital plane position of the satellite on the ellipse 3.3 Coordinate types 46

Orbital plane orientation of the ellipse position of the satellite Ecliptic plane

Orbital Elements From State Vector rv, a,, i e,, 3.3 Coordinate types 49

Orbital Elements From State Vector ˆK Ĵ Î 3.3 Coordinate types 50

Hints Order: e,a / i,ω,,ω,θ e,a: L2 i: where is h? Ω: use the line of nodes ω: use e θ: use ω 3.3 Coordinate types 51

Eccentricity (First Integral of Motion) r r r e v h v r v r e v r v r r / 3.3 Coordinate types 52

Semi-Major Axis (Vis-Viva Equation) v ellip 2 1 r a r r, v v a 2 r 2 rv 3.3 Coordinate types 53

Inclination (Geometrical Arguments) Normal to the orbit plane h r v h hk. ˆ z Normal to the equatorial plane i ˆ 1 h 1 ( ). cos z cos r v K h r v 3.3 Coordinate types 54

Longitude Ω (Geometrical Arguments) n Kˆ h h Nodal vector Where is n? In the orbital and equatorial planes, and, hence, along the line of nodes If cos nj. ˆ 0 ˆ r v K. Iˆ ni.ˆ cos r v n ˆ r v K r v 1 1 55

Argument of Perigee (Geom. Arguments) e v r v r r Its direction corresponds to the apse line If cos ek. ˆ 0 ˆ r v v r v r K. ne. r cos r v ne ˆ r v v r v r K r r v 1 1 56

True Anomaly (Geometrical Arguments) cos If rv. 0 v r v r r. re. r cos re v r v r r r 1 1 3.3 Coordinate types 57

Remarks If If nj. ˆ 0 ek. ˆ 0 ni.ˆ n 1 2 cos 1 ne. 2 cos ne If rv. 0 1 re. 2 cos re 3.3 Coordinate types 58

State Vector From Orbital Elements See exercice session. 3.3 Coordinate types 59

Matlab Example 3.3 Coordinate types 60

Two-Line Elements (TLE) For monitoring by Norad * * North American Aerospace Defense Command 61

Celestrak: Update TLE http://www.celestrak.com/norad/elements/ 62

Celestrak: ISS, February 24, 2009 3.3 Coordinate types 63

Celestrak: IRIDIUM 33, February 24, 2009 64

3. The Orbit in Space and Time 3.1 INERTIAL FRAMES 3.1.1 ICRS 3.1.2 ICRF 3.2 COORDINATE SYSTEMS 3.3 COORDINATE TYPES 65

Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L) 66