Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents

Similar documents
FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH- PERFORMANCE TARGET TRACKING

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Dead Reckoning navigation (DR navigation)

Modern Navigation. Thomas Herring

Downloaded from MILITARY STANDARD DEPARTMENT OF DEFENSE WORLD GEODETIC SYSTEM (WGS)

NAWCWPNS TM 8128 CONTENTS. Introduction Two-Dimensinal Motion Three-Dimensional Motion Nonrotating Spherical Earth...

5.12 The Aerodynamic Assist Trajectories of Vehicles Propelled by Solar Radiation Pressure References...

AS3010: Introduction to Space Technology

Modern Inertial Technology

Fundamentals of attitude Estimation

Autonomous Mobile Robot Design

Height systems. Rudi Gens Alaska Satellite Facility

Integration of a strapdown gravimeter system in an Autonomous Underwater Vehicle

MAE 142 Homework #5 Due Friday, March 13, 2009

Lecture. Aided INS EE 570: Location and Navigation. 1 Overview. 1.1 ECEF as and Example. 1.2 Inertial Measurements

UAV Navigation: Airborne Inertial SLAM

EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) EE 570: Location and Navigation

On the Observability and Self-Calibration of Visual-Inertial Navigation Systems

Sensors for mobile robots

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS

Circular Letter SC7: Satellite Gravity Field Missions SSG 2.193: Gravity Field Missions: Calibration and Validation

An Inverse Dynamics Attitude Control System with Autonomous Calibration. Sanny Omar Dr. David Beale Dr. JM Wersinger

PRELIMINAJ3.:( 6/8/92 SOFTWARE REQUIREMENTS SPECIFICATION FOR THE DSPSE GUIDANCE, NAVIGATION, AND CONTROL CSCI. Prepared by

Potential Theory and the Static Gravity Field of the Earth

Index Downloaded by on March 16, DOI: / Book DOI: /4.

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado.

Characterization of low-cost Accelerometers for Use in a Local Positioning System

The 3-D Global Spatial Data Model: Geometrical Foundation of the Global Spatial Data Infrastructure

EE565:Mobile Robotics Lecture 6

A Miniaturized Satellite Attitude Determination and Control System with Autonomous Calibration Capabilities

Baro-INS Integration with Kalman Filter

EE 570: Location and Navigation

Orbital Environment Simulator

1 Introduction. Position Estimation 4: 1.1 History

The... of a particle is defined as its change in position in some time interval.

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

Automated Celestial Systems for Attitude & Position Determination

GRACE Gravity Model GGM02

The GOCE Geoid in Support to Sea Level Analysis

GOCE. Gravity and steady-state Ocean Circulation Explorer

Attitude Estimation Version 1.0

Inertial Navigation and Various Applications of Inertial Data. Yongcai Wang. 9 November 2016

Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

EE 570: Location and Navigation

Research Article Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

Attitude Determination for NPS Three-Axis Spacecraft Simulator

A Low-Cost GPS Aided Inertial Navigation System for Vehicular Applications

GOCE-GRAND-2 Project Overview and Status of the GOCE Mission

Distance Determination between the MINOS Detectors for TOF Measurements. Dr. Virgil Bocean Alignment & Metrology Department Fermilab

DOWNLOAD PDF PLANE AND GEODETIC SURVEYING FOR ENGINEERS

Application of Data Fusion to Aerial Robotics. Paul Riseborough March 24, 2015

MOVING BASE INS/GPS VECTOR GRAVIMETRY ON A LAND VEHICLE

Laws of gyroscopes / cardanic gyroscope

IMU Filter. Michael Asher Emmanuel Malikides November 5, 2011

Height systems. Rüdiger Gens

r( θ) = cos2 θ ω rotation rate θ g geographic latitude - - θ geocentric latitude - - Reference Earth Model - WGS84 (Copyright 2002, David T.

Modeling Verticality Estimation During Locomotion

8.012 Physics I: Classical Mechanics Fall 2008

Cubature Particle filter applied in a tightly-coupled GPS/INS navigation system

Introduction to geodetic VLBI

Richard A. Mould. Basic Relativity. With 144 Figures. Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest

Principles of Global Positioning Systems Spring 2008

THE MECHANICAL UNIVERSE

2 Observing the Ocean Ships Navigation The Electronics Era 16

Introduction to CLASSICAL MECHANICS

Adaptive Estimation of Measurement Bias in Six Degree of Freedom Inertial Measurement Units: Theory and Preliminary Simulation Evaluation

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS

MARINE biologists, oceanographers, and other ocean researchers

VN-100 Velocity Compensation

Application of state observers in attitude estimation using low-cost sensors

GEOID UNDULATIONS OF SUDAN USING ORTHOMETRIC HEIGHTS COMPARED WITH THE EGM96 ANG EGM2008

SPIN STATE ESTIMATION OF TUMBLING SMALL BODIES

STOCHASTIC MODELLING AND ANALYSIS OF IMU SENSOR ERRORS

Gravity Probe B Data Analysis Challenges, Insights, and Results

Principles of the Global Positioning System Lecture 04"

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Verification of a Dual-State Extended Kalman Filter with Lidar-Enabled Autonomous Hazard- Detection for Planetary Landers

FAULT DETECTION for SPACECRAFT ATTITUDE CONTROL SYSTEM. M. Amin Vahid D. Mechanical Engineering Department Concordia University December 19 th, 2010

Inertial Frame frame-dragging

Lab #4 - Gyroscopic Motion of a Rigid Body

Evaluation of GPS in Orthometric Heights Determination in Khartoum State (Sudan)

Gravitational & Planetary Research Program

Inertial Odometry on Handheld Smartphones

A Study of the Effects of Stochastic Inertial Sensor Errors. in Dead-Reckoning Navigation

GP-B Attitude and Translation Control. John Mester Stanford University

Rao-Blackwellized Particle Filtering for 6-DOF Estimation of Attitude and Position via GPS and Inertial Sensors

The Basic Research for the New Compass System Using Latest MEMS

Global Models. Franz Barthelmes

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

LAWS OF GYROSCOPES / CARDANIC GYROSCOPE

Attitude Determination and. Attitude Control

Star-Tracker Attitude Measurement Model

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Landing-Sensor Choosing for Lunar Soft-Landing Process

Design and Flight Performance of the Orion. Pre-Launch Navigation System

An Oceanographer s Guide to GOCE and the Geoid

Spacecraft Attitude Control with RWs via LPV Control Theory: Comparison of Two Different Methods in One Framework

Chapter 4 State Estimation

Transcription:

Navtech Part #2440 Preface Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents Chapter 1. Introduction...... 1 I. Forces Producing Motion.... 1 A. Gravitation...... 1 B. Inertia...... 2 II. Inertial Equivalence of Earth-Centered Fame.3 III. Fundamental Equation of Inertial Navigation................4 IV. Description of an Inertial Navigation System................5 V. Inertial Measurements................................ 5 VI. Four Phases of Inertial Navigation....................... 6 VII. Role of Geodesy....... 7 VIII. Reference Earth Model.............................. 7 Part I Inertial Navigation Chapter 2. Notation, Coordinate Systems, and Units............. 15 I. Notation Conventions.............15 II. Coordinate System Definitions............18 A. Software Implemented......... 18 B. Hardware Implemented......22 III. Coordinate Transformation Characteristics.......23 A. Orthogonal............23 B. Nonorthogonal............. 25 IV. Commonly Used Coordinate Rotations..................... 30 A. Earth-Centered Inertial to Earth-Centered Earth-Fixed.......... 30 B. Earth-Centered Inertial to Local Geodetic Vertical............. 31 C. Earth-Centered Inertial to Local Geocentric Vertical............ 31 D. Earth Centered Earth-Fixed to Local Geodetic Vertical.......... 31 E. Earth-Centered Earth-Fixed to Local Astronomic Vertical........ 31 F. Star Line-of-Sight to Platform........................ 31 G. Star to Earth-Centered Inertial....................... 32 V. Units................ 32 Chapter 3. Equations of Motion in a Central Force Gravity Field.... 33 I. Motion in Inertial Coordinates with Zero-Specific Force...... 33 A. Zero-Specific Force........................ 34 B. Schuler Frequency............................... 36 II. State-Space Form............ 37 A. Laplace Transform Form..........................38 B. Frequency Response.............39

III. Motion in Inertial Computation Coordinates................... 40 A. Transfer Functions.................................. 40 B. Propagation of Initial State.....41 C. Frequency Response Functions,.,...41 IV. Motion in Earth-Fixed Computation Coordinates....43 A. Significance of Terms in Equation of Motion............. 44 B. Transfer Functions.................................. 44 C. Propagation of Initial State........................... 46 D. Frequency Response Functions........................49 V. Effect of Velocity Damping............................... 53 A. Propagation of initial State............................. 53 B. Frequency Response Functions.......................... 55 Chapter 4. Inertial Instrumentation......................... 59 I. Gyroscope......................................... 59 A. Rotating Wheel................................... 60 B. Optical......................................... 64 C. Recently Developed Instruments................. 67 II. Accelerometer... 68 A. Pendulous Integrated Gyro... 68 B. Proof Mass....................................... 69 C. Vibrating String.................................... 711 D. Fiber Optic....................................... 71 III. Gradiometer....................................... 71 A. Gravity Gradient Tensor... 71 B. Output Equations................................... 72 C. Output Equation Processing............................ 74 IV. Gimbal Configurations... 75 A. Mechanical Frame................................. 75 B. Floating Sphere................................... 75 V. Strapdown Configuration................................ 76 Chapter 5. Calibration............................ 79 I. Physical Reference Vectors............................... 79 A. Specific Force..................................... 79 B. Angular Rate............ 81 II. Calibration Procedure......82 A. Inertial Measurement Unit Configuration................. 82 B. Platform Rotation Schedule............................ 83 III. Accelerometer Calibration....87 A. Observation Equation.....87 B. Application of the Observation Equation....90 IV. Gyro Calibration......93 A. Observation Equation-Magnitude Form...93 B. Observation Equation-Vector Form...99

Chapter 6. Initial Alignment and Attitude Computation......... 109 I. Initial Alignment................................... 109 A. Analytical Coarse Alignment.......................... 110 B. Aligning an IMU Stable Platform to LGV Coordinates.......... 115 C. Aligning a Strapdown System to LGV Coordinates........ 117 II. Attitude.................................. 120 A. Platform to Earth-Centered Inertial............... 120 B. Platform to Local Astronomic Vertical................. 123 C. Body-to-Earth-Centered-Inertial Using Quaternions......123 Chapter 7. Geodetic Variables and Constants.............. 129 I. Method of Deriving Values for the Geodetic Variables and Constants... 129 A Apparent Gravity Magnitude..................... 129 B. Astronomic Coordinates.......................... 132 C Geocentric Gravitational Constant..................... 134 D. Semimajor Axis, Flattening, and SHCs................... 134 E. Earth Rotation Rate............................... 134 F. Pole Location.................................... 134 G. Geodetic Coordinates............................ 135 H. Geoid Height.............................. 136 I. Height Above Mean Sea Level......................... 136 II. World Geodetic System 1984............................ 137 A. Spherical Harmonic Coefficients.... 137 B. Equipotential Surfaces Associated with SHCs............... 139 C. Physical Meaning of the Low Degree and Order SHCs.......... 140 D. Regional Datum Transformations...... 142 III. Gravity Models.................................. 143 A. Spherical Harmonic............................... 143 B. Point Mass................................... 145 C. Two-Dimensional Food,, Series........................ 148 D. Two-Dimensional Table............................ 148 E. Other Types of Models....................... 149 IV. Useful Incremental Terms of Geodesy...... 149 A. Defections of the Vertical...... 149 B. Azimuth Differences...._...... 149 V. Extending Gravity Surveys with Internal Measurements........... 149 Chapter 8. Equations of Motion with General Gravity Model..... 153 I. State-Space Form in Earth-Centered Inertial Coordinates......... 153 II. State-Space Form in Earth- Centered Earth-Fixed Coordinates 156 III. State-Space Form in Earth-Centered Earth-Fixed Coordinates with Point-Mass Gravity Model.......................... 156 IV. State-Space Form in Local Geodetic Vertical Coordinates.......... 158 A. Standard Form................................ 158 B. Pseudo-Velocity Form............................... 167 V. Platform Control Laws................................ 163 A. Earth Centered Inertial............................. 163 B. Earth-Centered Earth-Fixed.................... 163 C. Local Geodetic Vertical-Torqued Azimuth................ 163

D. Local Geodetic Vertical-Free Azimuth.................. 164 E. Local Geodetic Vertical-Platform Carousel................ 164 F. Local Geodetic Vertical-Platform Tumble............... 164 VI. Integration of the Equations of Motion..................... 165 VII. Summary of Equations for Computing the Transition Matrix 166 A. Earth-Centered Inertial Coordinates-Stabilized Platform........ 166 B. Earth-Centered Earth-Fixed Coordinates-Stabilized Platform..... 168 C. Local Geodetic Vertical Coordinates-Standard Form-Stabilized Platform......................... 169 D. Local Gender, Vertical Coordinates-Pseudo-Velocity Form-Stabilized Platform.......................... 171 E. Earth-Centered Inertial Coordinates-Strapdown............. 172 F. Earth-Centered Earth-Fixed Coordinates-Strapdown......174 G. Local Geodetic Vertical Coordinates-Standard Form-Strapdown.. 175 H. Local Geodetic Vertical Coordinates--Pseudo-Velocity Form-Strapdown...... 177 Part II Inertial Navigation with Aids Chapter 9. Inertial Navigation with External Measurements...... 181 I. Basis for Using External Measurements..................... 181 A. Equations of Relative Motion.......................... 182 B. Application of the Equations of Relative Motion.............. 184 II. Kalman Filter State Updates.............................. 188 A. Overview of Navigation Computations Extended Kalman Filter... 189 B. Gain Evaluation and Covariance Update................... 191 C. Covariance Propagation.......192 D. Summary of Navigation Equations Extended Kalman Filter...... 194 E. Summary of Navigation Equations-Linearized Kalman Filter..... 194 F. Examples of External Measurement Predictions...196 G. Examples of Partial Derivative Evaluations...201 H. Example of a Suboptimal Filter........................ 205 I. Aliasing...207 Chapter 10. Error Equations for the Kalman Filter............ 211 I. Attitude Errors......211 A. Delimit...... 211 B. Angular Equivalent of the Position Error................... 212 C. Actual Coordinate Rotations In Terms of Errors.............. 214 D. Attitude Error Vector Differential Equations................. 214 II. System Dynamic and Error Distribution Matrices in Earth-Centered Inertial Coordinates.................................. 215 A. Acceleration-Earth-Centered Inertial Coordinates............ 215 B. Velocity -Earth-Centered Inertial Coordinates.............. 218 C. State-Space Form of Error Equations-Earth-Centered Inertial Coordinates. 218 III. System Dynamic and Error Distribution Matrices in Earth-Centered Earth-Fixed Coordinates................................219 A. Acceleration-Earth-Centered Earth-Fixed Coordinates. 219 B. Velocity-Earth-Centered Earth Fixed Coordinates...... 220

C. State-Space Form of Error Equations-Earth-Centered Earth-Fixed Coordinates..220 IV. System Dynamic and Error Distribution Matrices in Local Geodetic Vertical Coordinates........................... 221 A. Semiposition Error Definition.......................... 221 B. Semivelocity Error Definition.......................... 221 C. Acceleration -Local Geodetic Vertical Coordinates..........222 D. Velocity-Local Geodetic Vertical Coordinates....... 224 E. State-Space Form of Error Equations-Local Geodetic Vertical Coordinates.............................. 225 Chapter 11. Stale Variable Error Models................... 227 I. Inertial and External Measurement Equipment Error Shaping Functions.. 227 A. Random Constant................................. 228 B. Random Walk... 228 C. Random Ramp................................... 228 D. Markov................................. 229 II. Omission Gravity Model Error Shaping Functions................ 229 A Gravity Database Format............................. 229 B. Gravity Model Error Equations of Motion.................. 230 C. Autocorrelation Function Approximation Method............ 232 D. Influence of Vehicle Velocity on the Power Spectral Density...... 235 E. Autoregressive Moving Average Method................... 237 Part III Accuracy Analysis Chapter 12. Accuracy Criteria and Analysis Techniques..... 253 I. Central LimitTheorem... 253 II. Standard Error.... 254 A. Uncorrelated Standard Errors for Circular-Error-Probable Calculation. 254 B. Uncorrelated Standard Errors for Spherical-Error-Probable Calculation.255 III Gaussian Distribution Function for Navigation Position Errors........ 257 IV. Circular Error Probable and Spherical Error Probable... 257 A. CEP for Equal Standard Errors and Zen, Means.............. 257 B. SEP for Equal Standard Errors and Zero Means.............. 259 C. CEP and SEP for Unequal Standard Errors and Nonzero Means.... 260 D. Verification of the CEP and SEP Formulas.................. 264 V. Accuracy Analysis Techniques... 267 A. Types of Error.................................... 267 B. Error Analysis Using Sensitivity Coefficients................ 271 Chapter 13. Error Equations for Calibration, Alignment, and Initialization............................... 273 I. IneroallnatrumentCafiboatmn...... 273 A. Apparent Gravity Magnitude.......................... 274 B. RefereneeROlafionRate...... 277 C. Pole Location.................................... 278

II. Analytical Alignment......................... 279 A. Astronomic Coordinates...... 283 B. Geodetic Coordinates............................... 284 C. Specific Force and Pole Position........................ 285 III. Initialization...............................286 A. Initial Velocity.................................. 286 B. Initial Position................................... 287 C. Conversion to Earth-Centered Inertial and Local Geodetic Vertical Coordinates.............................. 288 IV. Kalman Filter Covarience, Initialization....................... 288 Chapter 14. Evaluation of Gravity Model Error Effects......... 291 I. Spherical Harmonic Gravity Model Errors..................... 292 II.. Point-Mass Model Generation............................ 293 III. Sources of Error for Point-Mass Model..................... 294 A. Representation...295 B. Reduction.........295 C. Omission....................................... 303 Appendix A. Matrix Inverse Formulas...................... 305 Appendix R. Laplace Transforms......................... 307 Appendix C. Quaternions............................... 311 Appendix D. Associated Legendre Functions.................. 313 Appendix E. Associated Legendre Function Derivatives..... 315 Appendix E Procedure for Generating Gravity Disturbance Realizations....... 317 Appendix G. Procedure for Generating Specific Force Profile...... 321 Index... 325