Baryonic LHC

Similar documents
Dark Matter and Gauged Baryon Number

Gauge Theories for Baryon Number.

arxiv: v2 [hep-ph] 4 Sep 2017

Exotic W + W Z Signals at the LHC

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

Adam Falkowski. 750 GeV discussion. LAL Orsay, 18 January 2016

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Review of Higgs results at LHC (ATLAS and CMS results)

Higgs Signals and Implications for MSSM

Beyond the Standard Model Higgs boson searches using the ATLAS etector

Two-Higgs-doublet models with Higgs symmetry

arxiv: v1 [hep-ex] 5 Sep 2014

CMS Higgs Results Adi Bornheim Caltech

Searches for dark matter at CMS and ATLAS

BSM Higgs Searches at ATLAS

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

Phenomenology of a light singlet-like scalar in NMSSM

Partnerium at the LHC

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Higgs Property Measurement with ATLAS

Directions for BSM physics from Asymptotic Safety

Non-Abelian SU(2) H and Two-Higgs Doublets

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Baryon and Lepton Number Violation at the TeV Scale

Higgs boson(s) in the NMSSM

Searching for the Higgs at the LHC

Probing Dark Matter at the LHC

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev

Light generations partners at the LHC

Identification of the Higgs boson produced in association with top quark pairs in proton-proton

Search for a new spin-zero resonance in diboson channels at 13 TeV with the CMS experiment

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

Hints from Run 1 and Prospects from Run 2 at CMS. Qiang Li Peking University, Beijing, China

Higgs Production at LHC

Properties of the Higgs Boson, and its interpretation in Supersymmetry

arxiv:hep-ph/ v1 17 Apr 2000

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Combined Higgs Results

Overview of the Higgs boson property studies at the LHC

Mono-X, Associate Production, and Dijet searches at the LHC

J. C. Vasquez CCTVal & USM

Di-photon at 750 GeV! (A first read)

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Search for single production of vector-like quarks decaying into a W-boson and a b-quark at 13 TeV

The Sextet Model Conformal Symmetry vs. Chiral Symmetry Breaking. Martin Hansen Claudio Pica, Vincent Drach, Ari Hietanen, Francesco Sannino

IX. Electroweak unification

Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach

CEPC Simulation: next step & Wish list to the MC Tool

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France

Discovery of the Higgs Boson

Higgs Searches at CMS

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

Composite gluino at the LHC

A Study of the Higgs Boson Production in the Dimuon Channelat 14 TeV

Prospects On Standard Model And Higgs Physics At The HL-LHC

Yu Gao Mitchell Institute for Fundamental physics and Astronomy Texas A&M University

E 6 inspired composite Higgs model and 750 GeV diphoton excess

Searches for Natural SUSY with RPV. Andrey Katz. C. Brust, AK, R. Sundrum, Z. Han, AK, M. Son, B. Tweedie, 1210.XXXX. Harvard University

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Search for new dilepton resonances using ATLAS open data

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC

750GeV diphoton excess and some explanations. Jin Min Yang

On behalf of the ATLAS and CMS Collaborations

Searches for Beyond SM Physics with ATLAS and CMS

arxiv: v1 [hep-ex] 8 Nov 2010

Finding the Higgs boson

Discovery Physics at the Large Hadron Collider

The study of the properties of the extended Higgs boson sector within hmssm model

Forward physics with proton tagging at the LHC

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Summary Introduction Description of the Resonances s-channel Processes Fusion Processes Drell-Yan Processes Conclusions

Double Higgs production via gluon fusion (gg hh) in composite models

Scalar Resonance at 750 GeV as Composite of Heavy Vector-Like Fermions

Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Phenomenology for Higgs Searches at the LHC

125 GeV Higgs Boson and Gauge Higgs Unification

Review of ATLAS experimental results (II)

The study of the extended Higgs boson sector within 2HDM model

Search for Higgs in H WW lνlν

The Higgs Boson as a Probe of New Physics. Ian Lewis (University of Kansas)

Hunting for elusive particles at LHC: Start of Run II

The inert doublet model in light of LHC and XENON

Discovery potential of the SM Higgs with ATLAS

Department of Physics and Astronomy 1082 Malott,1251 Wescoe Hall Dr. Lawrence, KS

arxiv: v1 [hep-ex] 7 Jan 2019

Search for the exotic decays of the Higgs boson

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

arxiv: v2 [hep-ph] 6 Jul 2017

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL

Strongly coupled gauge theories: What can lattice calculations teach us?

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

The production of additional bosons and the impact on the Large Hadron Collider

Gamma-rays constraint on Higgs Production from Dark Matter Annihilation

Measurement of the Higgs Couplings by Means of an Exclusive Analysis of its Diphoton decay

Dynamics of a two-step Electroweak Phase Transition

Highlights from the ATLAS Experiment

NON-SUSY SEARCHES FOR PHYSICS BEYOND THE STANDARD MODEL AT THE TEVATRON

Transcription:

Baryonic Higgs @ LHC Juri Smirnov Florence division INFN Many thanks to: Michael Dürr and Pavel Fileviez Perez arxiv:1704.03811

Why is the Proton stable? SM accidental symmetry What about BSM? Can stability be understood more fundamentally? O 6+n = c 6+n(v B ) n 2+n (u R u R d R e R ) Ansatz: Baryon number as local symmetry for n=3 and c 9 1 ) > 10 4 TeV Spontaneously broken Low Scale Unification: Talk by Sebastian Ohmer Full Story: Talk by Michael Dürr JHEP 1108 (2011) 068 Pavel Fileviez Perez, Mark B. Wise

Matter and Gauge Symmetry BSM SU (3)c SU (2)L U (1)Y SU (3)c U (1)em U (1)B SM

Matter and Gauge Symmetry BSM SU (3)c SU (2)L U (1)Y SU (3)c U (1)em U (1)B SM

Matter and Gauge Symmetry BSM X + SU (3)c SU (2)L U (1)Y SU (3)c U (1)em SM X U (1)B NEW = 0 SM

Matter and Gauge Symmetry BSM X + SU (3)c SU (2)L U (1)Y SU (3)c U (1)em SM X U (1)B NEW = 0 SM

Matter and Gauge Symmetry BSM X + SU (3)c SU (2)L U (1)Y SU (3)c U (1)em SM X U (1)B NEW = 0 SM

Particle Content arxiv:1704.03811

Particle Content arxiv:1704.03811

Particle Content B 2 B 1 = 1 n f =1/3 arxiv:1704.03811

Particle Content B 2 B 1 = 1 =1/3 n f Baryon Number forbids mixing with SM quarks This model could be potentially light arxiv:1704.03811

New Higgs Scenario I 1 BR(hB) formhb =1TeV 10 1 10 2 10 3 10 4 h B gg h B WW h B ZZ h B γγ h B Zγ h B t t h B h 1 h 1 0.001 0.01 0.1 0.3 θ B

New Higgs Scenario II 1 BR(hB) formhb =1TeV 10 1 10 2 10 3 10 4 h B gg h B WW h B ZZ h B γγ h B Zγ h B t t h B h 1 h 1 0.001 0.01 0.1 0.3 θ B

New Higgs Scenario III 1 BR(hB) formhb =1TeV 10 1 10 2 10 3 10 4 h B gg h B WW h B ZZ h B γγ h B Zγ h B t t h B h 1 h 1 0.001 0.01 0.1 0.3 θ B

Assuming Baryonic Higgs is lighter than VLQs (pp! h B )= C gg sm hb (h B! gg). VV (pp! h B ) BR(h B! VV) C gg s 2 2 s M 2 h B n 2 f 9 3 v 2 B BR(h B! VV). V hb V

The precision channels: 2-Gamma σ(pp hb) BR(hB γγ) [fb] 10 3 10 2 10 1 1 LHC γγ searches CMS 16.2fb 1 (13 TeV) + 19.7fb 1 (8 TeV) ATLAS 15.4fb 1 (13 TeV) Scenario I: θ B =0 Scenario I: θ B =0.3 Scenario II: θ B =0 Scenario II: θ B =0.3 Scenario III: θ B =0 Scenario III: θ B =0.3 vb [GeV] 10 5 10 4 10 3 Lower bound on v B from LHC γγ searches Scenario I: θ B =0,ATLAS Scenario I: θ B =0,CMS Scenario II: θ B =0,ATLAS Scenario II: θ B =0,CMS Scenario III: θ B =0,ATLAS Scenario III: θ B =0,CMS M hb >v B 10 1 200 500 1000 2000 M hb [GeV] vb = 2 TeV mq = 1 TeV 10 2 200 500 1000 2000 M hb [GeV] I) v B > 1 TeV II) v B > 2.3 TeV III) v B > 3 TeV

And Z-Gamma σ(pp hb) BR(hB Zγ) [fb] 10 3 10 2 10 1 1 LHC Zγ searches CMS 12.9fb 1 (13 TeV) ATLAS 13.3fb 1 (13 TeV) Scenario I: θ B =0 Scenario I: θ B =0.3 Scenario II: θ B =0 Scenario II: θ B =0.3 Scenario III: θ B =0 Scenario III: θ B =0.3 vb [GeV] 10 4 10 3 Lower bound on v B from LHC Zγ searches Scenario I: θ B =0,ATLAS Scenario I: θ B =0,CMS Scenario II: θ B =0,ATLAS Scenario II: θ B =0,CMS Scenario III: θ B =0,ATLAS Scenario III: θ B =0,CMS 10 1 300 500 1000 2000 M hb [GeV] 10 2 M hb >v B 300 500 1000 2000 M hb [GeV] vb = 2 TeV mq = 1 TeV

The precision channels: Model Independent 1 1 10 1 BR(hB γγ) 10 2 10 3 10 4 10 5 10 6 R =0.1, ATLAS R =0.1, CMS R =1,ATLAS R =1,CMS R =10,ATLAS R = M 2 h B /v 2 B =10,CMS 200 500 1000 2000 4000 M hb [GeV] BR(hB Zγ) 10 1 10 2 10 3 10 4 R =0.1, ATLAS R =0.1, CMS R =1,ATLAS R =1,CMS R =10,ATLAS R = M 2 h B /v 2 B =10,CMS 300 500 1000 2000 3000 M hb [GeV]

At larger mixing: WW σ(pp hb) BR(hB WW) [pb] 1 10 1 10 2 LHC WW searches ATLAS 13.2fb 1 (13 TeV) Scenario I: θ B =0 Scenario II: θ B =0 Scenario III: θ B =0 All scenarios: θ B =0.3 vb [GeV] 10 4 10 3 Lower bound on v B from LHC WW searches M hb >v B Scenario I: θ B =0 Scenario II: θ B =0 Scenario III: θ B =0 All scenarios: θ B =0.3 10 3 500 1000 2000 M hb [GeV] vb = 2 TeV mq = 1 TeV 10 2 500 1000 2000 M hb [GeV] I),II),III) vb > 2 TeV

Di-jet searches for the ZB 2 LHC dijet searches 10 5 Lower bound on v B from LHC dijet searches 1 gb 0.5 0.3 vb [GeV] 10 4 0.2 Combination from 1605.07940 CMS 27 fb 1 &36fb 1 (13 TeV) ATLAS 37.0 fb 1 (13 TeV) ATLAS 3.4 fb 1 (13 TeV); Trigger-object Level Analysis 0.1 500 1000 1500 2000 2500 3000 3500 4000 M ZB [GeV] Combination from 1605.07940 CMS 27 fb 1 &36fb 1 (13 TeV) ATLAS 37.0 fb 1 (13 TeV) ATLAS 3.4 fb 1 (13 TeV); Trigger-object Level Analysis 10 3 500 1000 1500 2000 2500 3000 3500 4000 M ZB [GeV] If MZB > 0.5 TeV vb > 3.4 TeV

Di-jet searches for the ZB 2 LHC dijet searches 10 5 Lower bound on v B from LHC dijet searches 1 But the ZB can hide! gb 0.5 0.3 vb [GeV] 10 4 0.2 Combination from 1605.07940 CMS 27 fb 1 &36fb 1 (13 TeV) ATLAS 37.0 fb 1 (13 TeV) ATLAS 3.4 fb 1 (13 TeV); Trigger-object Level Analysis 0.1 500 1000 1500 2000 2500 3000 3500 4000 M ZB [GeV] Combination from 1605.07940 CMS 27 fb 1 &36fb 1 (13 TeV) ATLAS 37.0 fb 1 (13 TeV) ATLAS 3.4 fb 1 (13 TeV); Trigger-object Level Analysis 10 3 500 1000 1500 2000 2500 3000 3500 4000 M ZB [GeV] If MZB > 0.5 TeV vb > 3.4 TeV

Alternative: VLQs are lighter than the Baryonic Higgs R R =(1, 1) 0 +(8, 1) 0 spin-0 resonance pseudo scalar, color singlet (! gg) = 8 3 d 2 s (M Q ) 2 R 1(0) 2 M 2 = 1 6 d 2 s (M Q ) 2 3 4 s (M Q ) 2y Q v B 3 R = M 2 h B v 2 B 1 ) (! gg) (h B! gg)

The precision channels: Model Independent 1 10 1 III) II) Photon Branching: BR(hB γγ) M 10 2 10 3 10 4 10 5 10 6 R =0.1, ATLAS R =0.1, CMS R =1,ATLAS R =1,CMS R =10,ATLAS R = M 2 h B /v 2 B =10,CMS 200 500 1000 2000 4000 M hb [GeV] M I) Scenario I) 0.5 % Limit about 1.4 TeV vb > 700 GeV Scenario II) 8 % Limit about 2.2 TeV vb > 1.1 TeV Scenarion III) 20% Limit about 2.6 TeV vb > 1.3 TeV

The Model Space Heavy ZB : vb > 3.4 TeV

The Model Space Light ZB: Heavy ZB : vb > 3.4 TeV

The Model Space Light ZB: Large Scalar Mixing MHB < 2 MQ Heavy ZB : vb > 3.4 TeV

The Model Space Light ZB: MHB < 2 MQ Large Scalar Mixing vb > 2 TeV Heavy ZB : vb > 3.4 TeV

The Model Space Light ZB: MHB < 2 MQ Large Scalar Mixing Small Scalar Mixing vb > 2 TeV Heavy ZB : vb > 3.4 TeV

The Model Space Light ZB: MHB < 2 MQ Large Scalar Mixing Small Scalar Mixing vb > 2 TeV I) vb > 1.0 TeV II) vb > 2.3 TeV III) vb > 3.0 TeV Heavy ZB : vb > 3.4 TeV

The Model Space Light ZB: MHB < 2 MQ Large Scalar Mixing Small Scalar Mixing vb > 2 TeV I) vb > 1.0 TeV II) vb > 2.3 TeV III) vb > 3.0 TeV MHB > 2 MQ Heavy ZB : vb > 3.4 TeV

The Model Space Light ZB: MHB < 2 MQ MHB > 2 MQ Large Scalar Mixing Small Scalar Mixing vb > 2 TeV I) vb > 1.0 TeV II) vb > 2.3 TeV III) vb > 3.0 TeV I) vb > 0.7 TeV II) vb > 1.1 TeV III) vb > 1.3 TeV Heavy ZB : vb > 3.4 TeV

Summary We study a model class with local Baryon Number Theoretically motivated by proton stability New Higgs is unavoidable Baryonic Higgs search gives the strongest bounds in the nightmare scenario (gb << 1) Approach provides also bounds on new scalar meson resonances Discovery sets upper bound on symmetry breaking scale!

Thank you!

Stable Charged Particles