ENGI 1313 Mechanics I

Similar documents
Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

ENGI 1313 Mechanics I

ENGI 1313 Mechanics I

5.1 Moment of a Force Scalar Formation

ENGI 1313 Mechanics I

MEM202 Engineering Mechanics Statics Course Web site:

Work, Energy, and Power. AP Physics C

Introduction. Electrostatics

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Electric Charge. Electric charge is quantized. Electric charge is conserved

Analytical Solution to Diffusion-Advection Equation in Spherical Coordinate Based on the Fundamental Bloch NMR Flow Equations

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

Chapter 4 Motion in Two and Three Dimensions

Section 4.2 Radians, Arc Length, and Area of a Sector

DonnishJournals

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

ENGI 1313 Mechanics I

Chapter 5 Trigonometric Functions

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

ENGI 1313 Mechanics I

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

Part V: Closed-form solutions to Loop Closure Equations

Electromagnetic Waves

Section 8.2 Polar Coordinates

ENGI 1313 Mechanics I

Strees Analysis in Elastic Half Space Due To a Thermoelastic Strain

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

Name Date. Trigonometric Functions of Any Angle For use with Exploration 5.3

Chapter 2: Introduction to Implicit Equations

Outline. Steady Heat Transfer with Conduction and Convection. Review Steady, 1-D, Review Heat Generation. Review Heat Generation II

A) N B) 0.0 N C) N D) N E) N

REVIEW Polar Coordinates and Equations

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT

3D-Central Force Problems I

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

Rotational Motion: Statics and Dynamics

Physics for Scientists and Engineers

Lecture 4. Electric Potential

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

2 Governing Equations

Hotelling s Rule. Therefore arbitrage forces P(t) = P o e rt.

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

Chapter 1: Introduction to Polar Coordinates

Physics Tutorial V1 2D Vectors

Vectors. Chapter. Introduction of Vector. Types of Vector. Vectors 1

Class #16 Monday, March 20, 2017

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

CHAPTER 24 GAUSS LAW

5.8 Trigonometric Equations

Microelectronics Circuit Analysis and Design. ac Equivalent Circuit for Common Emitter. Common Emitter with Time-Varying Input

CHAPTER GAUSS'S LAW

Topic/Objective: Essential Question: How do solve problems involving radian and/or degree measure?

Introduction and Vectors

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Vector d is a linear vector function of vector d when the following relationships hold:

Chapter 15. ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS

Vectors and 2D Motion. Vectors and Scalars

FREE Download Study Package from website: &

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

PROBLEM (page 126, 12 th edition)

PHYS 1114, Lecture 21, March 6 Contents:

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

EPr over F(X} AA+ A+A. For AeF, a generalized inverse. ON POLYNOMIAL EPr MATRICES

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

The Derivative of the Sine and Cosine. A New Derivation Approach

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Solving Problems of Advance of Mercury s Perihelion and Deflection of. Photon Around the Sun with New Newton s Formula of Gravity

Force between two parallel current wires and Newton s. third law

VECTOR MECHANICS FOR ENGINEERS: STATICS

Continuous Charge Distributions: Electric Field and Electric Flux

Trigonometry Standard Position and Radians

Magnetism. Chapter 21

2. Plane Elasticity Problems

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as

ENGI 5708 Design of Civil Engineering Systems

Journal of Theoretics

Stress, Cauchy s equation and the Navier-Stokes equations

Chapter 12. Kinetics of Particles: Newton s Second Law

Cartesian Coordinate System and Vectors

EFFECTS OF FRINGING FIELDS ON SINGLE PARTICLE DYNAMICS. M. Bassetti and C. Biscari INFN-LNF, CP 13, Frascati (RM), Italy

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

3D-Central Force Problems II

a Particle Forces the force. of action its sense is of application. Experimen demonstra forces ( P Resultant of Two Note: a) b) momentum)

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

1.6. Trigonometric Functions. 48 Chapter 1: Preliminaries. Radian Measure

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Physics 111. Exam #1. January 26, 2018

Δt The textbook chooses to say that the average velocity is

TEAL Physics and Mathematics Documentation

is the instantaneous position vector of any grid point or fluid

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

Trigonometric Functions of Any Angle 9.3 (, 3. Essential Question How can you use the unit circle to define the trigonometric functions of any angle?

A) (0.46 î ) N B) (0.17 î ) N

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 1502: Lecture 4 Today s Agenda

Chapter 4 Motion in Two and Three Dimensions

Transcription:

ENGI 1313 Mechanics I Lectue 05: Catesian Vects Shawn Kenny, Ph.D., P.Eng. ssistant Pfess Faculty f Engineeing and pplied Science Memial Univesity f Newfundland spkenny@eng.mun.ca

Chapte Objectives t eview cncepts fm linea algeba t sum fces, detemine fce esultants and eslve fce cmpnents f D vects using Paallelgam Law t expess fce and psitin in Catesian vect fm t intduce the cncept f dt pduct 007 S. Kenny, Ph.D., P.Eng.

Lectue 05 Objectives t futhe examine Catesian vect ntatin and extend t epesentatin f a 3D vect t sum 3D cncuent fce systems 3 007 S. Kenny, Ph.D., P.Eng.

Recall D Catesian Vect Cplana Fce Vect Summatin Unit vect dimensinless F F R R F 1 F + F 3 ( F F + F ) i + ( F + F F ) j 1x x 3 x ) 1y y 3 y ) Unit Vect; ^ i F X F X ^ Unit Vect; j F y F y Fce Vects Cmpnent Vects Resultant Fce Vect 4 007 S. Kenny, Ph.D., P.Eng.

Extend t 3D Why Use Vects Simplifies mathematical peatins Rectangula Cdinate System Right-hand ule 5 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect in 3D Thee Unit Vects Cmpnent magnitude x, y, z scala Cmpnent sense +, - Catesian quadant Cmpnent diectin i, j, k unit vects 6 007 S. Kenny, Ph.D., P.Eng.

7 007 S. Kenny, Ph.D., P.Eng. Summatin Catesian Vects in 3D Use D Pinciples Vect Vect B ( ) ( ) ( )kˆ B ĵ B î B B z z y y x x + + + + + + kˆ ĵ î z y x + + kˆ B ĵ B î B B z y x + + ( ) ( ) ( )kˆ B ĵ B î B B z z y y x x + +

Catesian Vect Magnitude Successive pplicatin f D Pinciple Pythagean theem Find cmpnents x and y + x y Cmbine with z cmpnent + z x + y + z Magnitude f vect 8 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect Diectin Cdinate Diectin ngle Vect tail with cdinate axis α, β, and γ Range fm 0 t 180 Visualizatin aid using ight ectangula pism 9 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect Diectin (cnt.) Cdinate Diectin ngle, α Measued +x-axis t tail f vect csα x 10 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect Diectin (cnt.) Cdinate Diectin ngle, β Measued +y-axis t tail f vect csα cs β x y 11 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect Diectin (cnt.) Cdinate Diectin ngle, γ Measued +z-axis t tail f vect csα cs β cs γ x y z 1 007 S. Kenny, Ph.D., P.Eng.

13 007 S. Kenny, Ph.D., P.Eng. Catesian Vect Diectin (cnt.) Diectin Csines Cdinate diectin angles (α, β, & γ) detemined by cs -1 cs x α cs y β cs z γ cs x 1 α cs y 1 β cs z 1 γ

Catesian Vect Diectin (cnt.) Expess as Catesian Vect, x î + y ĵ + z kˆ Recall Unit Vect Fm Unit Vect, u^ û x y z î + ĵ + kˆ + + x y ^ Unit Vect; u z u 14 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect Diectin (cnt.) Unit Vect, ^u x y û î + ĵ + Relate t Diectin Csines csα x Theefe û cs β z y kˆ csα î + cs β ĵ + cs γ csγ kˆ z u 15 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect Diectin (cnt.) Find Unit Vect mplitude, u ^ Recall geneal case f vect and magnitude x î + y ĵ + z kˆ + + Whee the unit vect and magnitude is x y z û csα î + cs β ĵ + cs γ kˆ Theefe cs û cs α + cs β + cs γ 1 α + cs β + cs γ 1 16 007 S. Kenny, Ph.D., P.Eng.

Catesian Vect Oientatin (cnt.) Typical Catesian Vect Pblems Magnitude and cdinate angles Example.8 Magnitude and pjectin angles Example.10 Only need t knw angles 17 007 S. Kenny, Ph.D., P.Eng.

Cmpehensin Quiz 5-01 If yu nly knw u (unit vect) yu can detemine the f uniquely. ) magnitude () B) angles (α, β, and γ) C) cmpnents ( x, y, & z ) D) ll f the abve nswe B Unit vect (u ) defines diectin defines magnitude 18 007 S. Kenny, Ph.D., P.Eng.

Example Pblem 5-01 Fces F and G ae applied t a hk. Fce F makes 60 angle with the X-Y plane. Fce G has a magnitude f 80 lb with α 111 and β 69.3. G 80lb α 111 β 69.3 Find the esultant fce in Catesian vect fm 19 007 S. Kenny, Ph.D., P.Eng.

Example Pblem 5-01 (cnt.) Reslve Fce F cmpnents F z 100 lb sin60 86.60 lb F 100 lb cs60 50.00 lb F z G 80lb α 111 β 69.3 F x 50 lb cs 45 35.36 lb F y 50 lb sin45 35.36 lb F y F x Catesian Vect Ntatin F { 35.36 î 35.36 ĵ + 86.60 kˆ }lb F 0 007 S. Kenny, Ph.D., P.Eng.

Example Pblem 5-01 (cnt.) Detemine γ f Vect G cs α + cs β + cs γ 1 G 80lb α 111 β 69.3 cs 111 + cs 69.3 + cs γ 1 γ csγ 1 ( 0.3584) + ( 0.3535) ± 0. 8641 γ 30. 149.78 1 007 S. Kenny, Ph.D., P.Eng.

Example Pblem 5-01 (cnt.) Cdinate Diectin ngles α111 z α 111 -x G 80lb G csα x G G csα G x x y Unit cicle G x G x 80 cs111 80 cs G x 8.67lb lb ( 180 111 ) lb 007 S. Kenny, Ph.D., P.Eng.

Example Pblem 5-01 (cnt.) Cdinate Diectin ngles β and γ z -x G 80lb γ 30. β 69.3 y x 3 007 S. Kenny, Ph.D., P.Eng.

Example Pblem 5-01 (cnt.) Catesian Vect G -x z G 80lb α 111 γ 30. x β 69.3 y { G 80 cs111 î + 80 cs69.3 ĵ + 80 cs 30. kˆ }lb G { 8.67 î + 8.8 ĵ + 69.13 kˆ }lb 4 007 S. Kenny, Ph.D., P.Eng.

Example Pblem 5-01 (cnt.) Cmbine Fce Vects R F + G F { 35.36 î 35.36 ĵ + 86.60 kˆ }lb G { 8.67 î + 8.8 ĵ + 69.13 kˆ }lb G 80lb α 111 β 69.3 Resultant Vect R + R { 6.69 î 7.08 ĵ + 156 kˆ }lb {( 35.36 8.67) î + ( 35.36 + 8.8) ĵ + ( 86.60 69.13) kˆ }lb 5 007 S. Kenny, Ph.D., P.Eng.

Gup Pblem 5-01 Pblem -57 (Hibbele, 007) Detemine the magnitude and cdinate diectin angles f F and F 1. Sketch each fce n an x, y, z efeence. F { 1 60 î 50 ĵ + 40 kˆ }N F { 40 î 85 ĵ + 30 kˆ }N 6 007 S. Kenny, Ph.D., P.Eng.

Gup Pblem 5-01 (cnt.) Fce F 1 F { 1 60 î 50 ĵ + 40 kˆ }N F ( 60N) + ( 50N) + ( 40N) 87.7 N 1 F1x 60N csα1 α1 46. 9 F 87.75N 1 F1y 50N cs β 1 β1 15 F 87.75N F1z 40N cs γ1 γ1 6. 9 F 87.75N 1 1 7 007 S. Kenny, Ph.D., P.Eng.

Gup Pblem 5-01 (cnt.) Fce F F { 40 î 85 ĵ + 30 kˆ }N F ( 40N) + ( 85N) + ( 30N) 98.6 N F x 40N csα α 114 F 98.6N F y 85N cs β β 150 F 98.6N Fz 30N cs γ γ 7. 3 F 98.6N 8 007 S. Kenny, Ph.D., P.Eng.

Gup Pblem 5-0 Pblem -59 (Hibbele, 007) Detemine the magnitude and cdinate angles f F acting n the stake. 9 007 S. Kenny, Ph.D., P.Eng.

Gup Pblem 5-0 Detemine F and cmpnents 5 F 40N 50N 4 3 F z 40N 30N 4 F x 40N cs70 13.7N F x F F y F z F y 40N sin70 37.6N 30 007 S. Kenny, Ph.D., P.Eng.

Gup Pblem 5-0 Detemine Cdinate Diectin ngles Fx 13.68N csα α 74. 1 F 50N Fy 37.58N cs β β 41. 3 F 50N Fz 30N cs γ γ 53. 1 F 50N 31 007 S. Kenny, Ph.D., P.Eng.

Classificatin f Textbk Pblems Hibbele (007) Pblem Set Cncept Degee f Difficulty Estimated Time -57 Catesian: Magnitude & diectin Medium 10-15min -58 t -60 Catesian: Fces Easy 5-10min -61 t -69 Catesian; Fce cmpnents & esultant Easy 5-10min -70 t -71 Catesian; Fce cmpnents & esultant Had 0-5min -7 t -78 Catesian; Fce cmpnents & esultant Medium 15-0min 3 007 S. Kenny, Ph.D., P.Eng.

Refeences Hibbele (007) http://wps.penhall.cm/esm_hibbele_eng mech_1 en.wikipedia.g 33 007 S. Kenny, Ph.D., P.Eng.