A pointwise equivalence of gradients on configuration spaces

Similar documents
Poisson stochastic integration in Hilbert spaces

THE LENT PARTICLE FORMULA

Dirichlet Forms for Poisson Measures and Lévy Processes: The Lent Particle Method

Quasi-invariant measures on the path space of a diffusion

Random Fields: Skorohod integral and Malliavin derivative

THE MALLIAVIN CALCULUS FOR SDE WITH JUMPS AND THE PARTIALLY HYPOELLIPTIC PROBLEM

Quantum stochastic calculus applied to path spaces over Lie groups

Independence of some multiple Poisson stochastic integrals with variable-sign kernels

Divergence theorems in path space II: degenerate diffusions

COVARIANCE IDENTITIES AND MIXING OF RANDOM TRANSFORMATIONS ON THE WIENER SPACE

Generalized Ricci Bounds and Convergence of Metric Measure Spaces

Kato s inequality when u is a measure. L inégalité de Kato lorsque u est une mesure

Dirichlet Forms for Poisson Measures and Lévy Processes: The Lent Particle Method

BOOK REVIEW. Review by Denis Bell. University of North Florida

Citation Osaka Journal of Mathematics. 41(4)

GENERALIZED WHITE NOISE OPERATOR FIELDS AND QUANTUM WHITE NOISE DERIVATIVES. Un Cig Ji & Nobuaki Obata

A note on the moving hyperplane method

Sébastien Chaumont a a Institut Élie Cartan, Université Henri Poincaré Nancy I, B. P. 239, Vandoeuvre-lès-Nancy Cedex, France. 1.

ANNALES SCIENTIFIQUES L ÉCOLE NORMALE SUPÉRIEURE. Cluster ensembles, quantization and the dilogarithm. Vladimir V. FOCK & Alexander B.

Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity

Regularity of the density for the stochastic heat equation

Fatou s Theorem and minimal graphs

Chaos expansions and Malliavin calculus for Lévy processes

Large Deviations for Perturbed Reflected Diffusion Processes

Γ -convergence and Sobolev norms

Invariance of Poisson measures under random transformations

2 results about the trunk load process which is the solution of the Bene equation. In the second section, we recall briey the SCV for the classical Wi

VITA of Yaozhong HU. A. List of submitted papers

Introduction to Infinite Dimensional Stochastic Analysis

Admissible vector fields and quasi-invariant measures

Asymptotic behavior of some weighted quadratic and cubic variations of the fractional Brownian motion

Holomorphic torsion on Hermitian symmetric spaces

Chapter 2 Introduction to the Theory of Dirichlet Forms

An Attempt of Characterization of Functions With Sharp Weakly Complete Epigraphs

Inverse Brascamp-Lieb inequalities along the Heat equation

Absolute Continuity in Infinite Dimension and Anticipating Stochastic Calculus

Hodge de Rham decomposition for an L 2 space of differfential 2-forms on path spaces

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY

Journal de la Société Française de Statistique Vol. 153 No. 3 (2014) Interval reliability for semi-markov systems in discrete time

A REPRESENTATION FOR THE KANTOROVICH RUBINSTEIN DISTANCE DEFINED BY THE CAMERON MARTIN NORM OF A GAUSSIAN MEASURE ON A BANACH SPACE

arxiv: v2 [math.dg] 13 Feb 2018

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen

Normal approximation of Poisson functionals in Kolmogorov distance

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

Méthodes d énergie pour le potentiel de double couche: Une inégalité de Poincaré oubliée.

Square roots of perturbed sub-elliptic operators on Lie groups

Title: Localized self-adjointness of Schrödinger-type operators on Riemannian manifolds. Proposed running head: Schrödinger-type operators on

Edition service. Main Scientific Animation. PhD students

Some remarks on special subordinators

Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations

A generalization of Cramér large deviations for martingales

arxiv: v1 [math.ap] 12 Mar 2009

A Dirichlet form primer.

Refined Hyers Ulam approximation of approximately Jensen type mappings

On m-accretive Schrödinger operators in L p -spaces on manifolds of bounded geometry

BV functions in a Gelfand triple and the stochastic reflection problem on a convex set

Convergence at first and second order of some approximations of stochastic integrals

The atomic decomposition for tent spaces on spaces of homogeneous type

Sharp estimates of bounded solutions to some semilinear second order dissipative equations

Transmission eigenvalues with artificial background for explicit material index identification

LAN property for ergodic jump-diffusion processes with discrete observations

A Spectral Gap for the Brownian Bridge measure on hyperbolic spaces

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

Normal approximation of geometric Poisson functionals

Stochastic analysis, by Paul Malliavin, Springer, 1997, 343+xi pp., $125.00, ISBN

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

Heat equations with singular potentials: Hardy & Carleman inequalities, well-posedness & control

m-order integrals and generalized Itô s formula; the case of a fractional Brownian motion with any Hurst index

Известия НАН Армении. Математика, том 46, н. 1, 2011, стр HOMOGENEOUS GEODESICS AND THE CRITICAL POINTS OF THE RESTRICTED FINSLER FUNCTION

Square roots of operators associated with perturbed sub-laplacians on Lie groups

for all f satisfying E[ f(x) ] <.

The Lévy-Itô decomposition and the Lévy-Khintchine formula in31 themarch dual of 2014 a nuclear 1 space. / 20

Mixed exterior Laplace s problem

Stochastic calculus and martingales on trees

Nonlinear semigroups generated by j-elliptic functionals

A cocycle proof that reversible Fleming-Viot processes have uniform mutation

Energy image density property and local gradient for Poisson random measures

A NON-PARAMETRIC TEST FOR NON-INDEPENDENT NOISES AGAINST A BILINEAR DEPENDENCE

Solvability of the Dirac Equation and geomeric applications

The extension of the finite-dimensional version of Krivine s theorem to quasi-normed spaces.

HOLOMORPHIC MAPPINGS INTO SOME DOMAIN IN A COMPLEX NORMED SPACE. Tatsuhiro Honda. 1. Introduction

-variation of the divergence integral w.r.t. fbm with Hurst parameter H < 1 2

C. R. Acad. Sci. Paris, Ser. I

Counterexample to the infinite dimensional Carleson embedding theorem

Introduction to Infinite Dimensional Stochastic Analysis

THE RESOLUTION OF SAFFARI S PHASE PROBLEM. Soit K n := { p n : p n (z) = n

L -uniqueness of Schrödinger operators on a Riemannian manifold

ANNALES DE L I. H. P., SECTION C

The Rademacher Cotype of Operators from l N

An Introduction to Malliavin Calculus. Denis Bell University of North Florida

VISCOUS HYDRODYNAMICS THROUGH STOCHASTIC PERTURBATIONS OF FLOWS OF PERFECT FLUIDS ON GROUPS OF DIFFEOMORPHISMS *

arxiv: v2 [gr-qc] 9 Sep 2010

1. Plurisubharmonic functions and currents The first part of the homework studies some properties of PSH functions.

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

A NOTE ON STOCHASTIC INTEGRALS AS L 2 -CURVES

arxiv: v4 [math.pr] 19 Jan 2009

KOLMOGOROV DISTANCE FOR MULTIVARIATE NORMAL APPROXIMATION. Yoon Tae Kim and Hyun Suk Park

MGDA II: A direct method for calculating a descent direction common to several criteria

New Fréchet features for random distributions and associated sensitivity indices

SMALL STRONG SOLUTIONS FOR TIME-DEPENDENT MEAN FIELD GAMES WITH LOCAL COUPLING

Transcription:

A pointwise equivalence of gradients on configuration spaces Nicolas Privault Equipe d Analyse et Probabilités, Université d Evry-Val d Essonne Boulevard F. Mitterrand, 91025 Evry Cedex, France e-mail: privault@lami.univ-evry.fr Abstract - This Note aims to provide a short and self-contained proof of an equivalence between square field operators on configuration spaces. A recent result in analysis on configuration spaces, namely an equivalence between Dirichlet forms, is retrieved as a particular case. Our method relies on duality formulas and on extensions of the stochastic integral on Poisson space. Une équivalence de gradients ponctuelle sur les espaces de configurations Résumé - Cette Note donne une preuve concise d une équivalence entre opérateurs carré du champ sur l espace des configurations. Ceci permet de retrouver un résultat récent relatif à une équivalence entre formes de Dirichlet sur ce même espace. La méthode utilisée repose sur des formules de dualité et sur les extensions de l intégrale stochastique sur l espace de Poisson. Version française abrégée L analyse sur les espaces de configurations développée dans 1] repose sur une égalité de normes en espérance pour le gradient local Υ et l opérateur de différence finie D sur les espaces des configurations Υ sur une variété Riemannienne. Dans cette Note nous présentons une version ponctuelle de cette relation, avec une preuve concise qui fait apparaître le rôle de la dualité sur l espace de Poisson. On montre que ( Υ F, Υ G L 2 γ (T = δ ( ( DF, DG T + ( DF, DG L 2 σ (T (1 pour γ Υ et F, G S, où δ est l adjoint de l opérateur de différence finie D sous la mesure de Poisson π σ d intensité σ sur Υ. Cette relation s écrit ( Υ F, Υ G L 2 γ (T = ( DF, ] DG Tx (γ\{x}dγ(x, où γ\{x} représente la configuration γ Υ à laquelle on a enlevé le point x. En prenant l espérance dans (1 on obtient comme corollaire l égalité ] σ ( Υ F, Υ G L 2 γ (T = σ ( DF, DG L 2 σ (T ], pour toutes fonctionnelles F et G régulières sur Υ, c est à dire le Th. 5-2 de 1], et ce uniquement sous la mesure de Poisson π σ. Plus généralement on montre que l opérateur carré du champ associé à la seconde quantification différentielle d un opérateur de diffusion conservatif H sur Cc (, de carré du champ local Γ, est donné par Γ Υ (F, G = δ ( Γ (DF, DG + Γ (DF, DGdσ, F, G S. (2 1

1 Introduction The study of the stochastic calculus of variations for point processes started in 3], 2], has been developed in several different directions, using mainly two different gradients. The gradient on Fock space is interpreted as a difference operator and has been used in e.g. 7], 9], 11]. On the other hand, infinitesimal perturbations of configurations, cf. 3], 2], 6], 4], 1], lead to a gradient that defines a local Dirichlet form. Stochastic analysis on configuration spaces, cf. 1], relies on the equivalence of expectation norms (13 that links the local gradient Υ to the finite difference operator D on the configuration space Υ of a Riemannian manifold. In this paper we use the duality on Poisson space to obtain a pointwise equivalence of gradients. 2 Difference operators on configuration spaces The results of this section and the following hold without referring to a particular probability measure on Υ. Let be a metric space and let the configuration space Υ on be the set of Radon measures on of the form i=n ε x i, with (x i i=n, x i x j, i j, and N IN { }. Let σ be a diffuse Borel measure on. As a convention we identify γ Υ with its support. Following 10], for any x and any mapping F : Υ IR we define the mappings ε + x F : Υ IR and ε x F : Υ IR by ε x F ] (γ = F (γ\{x}, and ε + x F ] (γ = F (γ {x}, γ Υ. The difference operator D has been defined in 10] as D x F = ε + x F ε x F, x. For u : Υ IR measurable (and everywhere defined, the negative and positive Skorohod integral operators are defined as δ (u = ε x u x d(γ(x σ(x = ε x u x dγ(x u x dσ(x, (3 and δ + (u = ε + x u x (dγ(x dσ(x = u x dγ(x ε + x u x dσ(x, (4 γ Υ, provided the series and integrals converge. The proof of the following lemma is straightforward from (3 and (4. Lemma 1 For u : Υ IR measurable, the operators δ, δ + and D are linked to the anticipating pathwise integral by the identities u x d(γ(x σ(x = δ + (u + D x u x dσ(x, (5 and provided that all series and integrals converge. u x d(γ(x σ(x = δ (u + D x u x dγ(x, (6 With respect to multiple integrals it is well known that D acts by annihilation and δ acts by creation. This property does not hold for δ +, in fact δ + (u = δ (u + Du. 2

3 Differential operators on configuration spaces We now assume that is a Riemannian manifold with volume element m, and σ(dx = ρ(xm(dx with ρ L 2 loc (, m. Let T x denote the tangent space at x, let denote the gradient on, and let L 2 γ(t = L 2 (, T, γ, resp. L 2 σ(t = L 2 (, T, σ denote the random, resp. deterministic tangent space to Υ at γ Υ, cf. 1]. Let also S = { f ( ϕ 1 dγ,..., ϕ n dγ, ϕ 1,..., ϕ n C c (, f C b (IR n, n IN where P(IR n denotes the space of real polynomials in n variables, and { i=n } U = F i u i : u 1,..., u n Cc (, F 1,..., F n S, n 1. The following gradient has been defined for = IR d in 2], p. manifold in 1]. Definition 1 For any F = f ( ϕ 1dγ,..., ϕ ndγ S, let i=n ( Υ x F (γ = i f ϕ 1 dγ,..., ϕ n dγ ϕ i (x, x. }, 152, and for a Riemannian The following result gives the relation between Υ, D and the gradient on. Lemma 2 We have for F S and γ Υ : Υ x F = ε x D x F, γ(dx a.e. and ε + x Υ x F = D x F, σ(dx a.e. Proof. Let F = f ( ϕ 1dγ,..., ϕ ndγ, x, γ Υ. If x γ, then i=n ( Υ x F (γ = i f ϕ 1 d(γ\{x} + ϕ 1 (x,..., ϕ n d(γ\{x} + ϕ n (x ϕ i (x ( = f ϕ 1 d(γ\{x} + ϕ 1 (x,..., ϕ n d(γ\{x} + ϕ n (x ( = ε + x f ϕ 1 d(γ\{x},..., ϕ n d(γ\{x} = ( ε + x F (γ\{x} = ( D x F (γ\{x}, γ(dx a.e. If x / γ, hence σ(dx-a.e., we have ( ε + x Υ x F (γ = f ϕ 1 dγ + ϕ 1 (x,..., ( = ε + x f ϕ 1 dγ,..., ϕ n dγ Lemma 2 and (3, (4, imply the following ϕ n dγ + ϕ n (x Proposition 1 For F, G S and any γ Υ, we have the relations and = ε + x F (γ = D x F (γ. ( Υ F, Υ G L 2 γ (T = δ ( ( DF, DG T + ( DF, DG L 2 σ (T, (7 ( Υ F, Υ G L 2 γ (T = δ + ( ( Υ F, Υ G T + ( DF, DG L 2 σ (T. (8 3

4 Integration by parts characterization Theorem 1 Let π be a probability measure on Υ under which δ (h, resp. δ + (h, is integrable, h C c (. The following statements are equivalent, and they hold if and only if π is the Poisson measure π σ with intensity σ: F δ (h ] = (DF, hl 2 (,σ], h Cc (, F S, (9 F δ + (h ] = (DF, hl2 (,γ], h Cc (, F S, (10 δ + (u ] = 0, u U, (11 δ (u ] = 0, u U. (12 Proof. Clearly, these statements are equivalent, due to Lemma 1 applied to u = hf, and to the relations δ + (u = δ (ε + u, δ (u = δ + (ε u, u U. Assume that (9 holds, let h C c ( and ψ(z = exp ( iz hdγ ], z IR. We have d dz ψ(z = i = i δ (h exp ( hdγ exp ( iz ( ( = i h, D exp iz = i(h, e izh 1 L2 (,σ exp ] iz hdγ ] hdγ + i ] hdγ ( iz L 2 (,σ hdγ ( hdσ exp iz + iψ(z hdσ ] + iψ(z ] hdγ hdσ = iψ(z(h, e izh L2 (,σ, where we used the relation D x exp( hdγ = 1 exp( hdγ, σ(dx-a.e. With the initial (ehx condition ψ(0 = 1, this gives ψ(z = exp (eizh 1dσ, z IR. Conversely, this calculation shows by completeness of exponential functions that (9 is satisfied if π = π σ. Relations (11 and (12 can be regarded as the characterization results of 8], used respectively in 12] and 1]. Relation (9, resp. (10, has been obtained in 7], 9], resp. in 10], under the assumption π = π σ. As a consequence, Th. 5-2 of 1] is obtained by taking expectations under π σ in (7 or (8: ] σ ( Υ F, Υ G L 2 γ (T = σ ( DF, DG L 2 σ (T ], (13 hence the generator of the diffusion process associated to the Dirichlet form given by Υ is the differential second quantization dγ(h σ of the Dirichlet operator H σ = div σ, cf. 1], and 14], 2] for the construction of this process. Remark 1 Although (8 gives (13 by taking expectations, it does not yield any information as a random identity. On the other hand, (7 is a true pointwise identity that also reads ( Υ F, Υ G L 2 γ (T = ( DF, ] DG Tx (γ\{x}dγ(x, γ Υ. 4

5 Second quantization and carré du champ operators In this section we work in a more general setting and show that (13 is a consequence of the computation of the carré du champ operator associated to second quantized diffusion operators. The difference with the above construction is that we are not restricted to the structure given by. We refer to 13] and 5] for the definition of diffusion operators, carré du champ operators and their locality property on the Wiener and Poisson spaces as well as on more general structures. The differential second quantization dγ(h of an operator H on C c ( is defined as dγ(h F = δ (H DF, F S. The following theorem shows how to compute the carré du champ of dγ(h. Theorem 2 Let H be a diffusion operator on Cc (, conservative under σ, with carré du champ Γ. Then dγ(h is a diffusion operator with carré du champ Γ Υ (F, G = δ ( Γ (DF, DG + Γ (DF, DGdσ, F, G S. (14 Proof. Defining Γ Υ (F, G by (14 we have, using (5 and the relations δ + (u = δ (u + Du, DF 2 = 2F DF + DF DF σ-a.e.: 1 2 dγ(h (F 2 = 1 ( 2 δ H D(F 2 = δ ( F H DF + H (DF DF = F dγ(h F (DF, H DF L 2 (,σ + δ ( Γ (DF, DF = F dγ(h F + Γ Υ (F, F. It remains to prove that Γ Υ is local. We have δ ( Γ (DF 2, DG + Γ (DF 2, DGdσ = 2δ ( F Γ (DF, DG +δ ( Γ (DF DF, DG + 2F Γ (DF, DGdσ + Γ (DF DF, DGdσ = 2δ ( F Γ (DF, DG + 2δ ( DF Γ (DF, DG +2F Γ (DF, DGdσ + 2(DF, Γ (DF, DG L2 (,σ = 2F Γ (DF, DG. Relation (7 and Th. 2 show in particular that (F, G ( Υ F, Υ G L 2 γ (T is the carré du champ operator associated to the differential second quantization dγ(h σ of H σ. 6 Stochastic integration We now work with the generator Hσ and carré du champ Γ σ given by and study the consequences of Th. 2 on stochastic integration (Hσ is assumed to be conservative. We state a definition of adaptedness that does not require an ordering on, following the Wiener space construction of 15]. Let V = { u : u U}. A vector u = i=n F i u i V is said to be adapted if u i DF i = 0 on Υ, i = 1,..., n. The set of square-integrable adapted vectors, denoted by L 2 ad (Υ, T is the completion in L 2 (Υ, π σ L 2 (, T, σ of the adapted vectors in V. For x we define the bilinear form trace x on T x T x by trace x u v = (u, v Tx, u v T x T x. Let π be a probability on Υ under which Υ admits an adjoint on S V, denoted by div Υ π, and such that S is dense in L 2 (Υ, π. 5

Proposition 2 We have for u = i=n G i u i V: i=n div Υ π u = G i div Υ π u i trace x Υ x u(xγ(dx. (15 If π is the Poisson measure π σ with intensity σ, then div Υ π σ u = div σ u(xγ(dx trace x Υ x u(xγ(dx, u U, (16 and for any u L 2 ad (Υ, T, div Υ π σ (u = δ (div σ u = div σ u(xγ(dx. (17 Proof. Relation (15 follows from the derivation property of Υ. Relation (16 holds because div Υ π σ u i = δ (div σ u i = div σ u i dγ from (13. Relation (17 follows from (16 and the definition of adaptedness, using a density argument and the Itô isometry. References 1] S. Albeverio, Yu. G. Kondratiev, and M. Röckner. Analysis and geometry on configuration spaces. J. Funct. Anal., 154:444 500, 1998. 2] K. Bichteler, J.B. Gravereaux, and J. Jacod. Malliavin Calculus for Processes with Jumps, volume 2 of Stochastics Monographs. Gordon and Breach, 1987. 3] J.M. Bismut. Calcul des variations stochastique et processus de sauts. Zeitschrift für Wahrscheinlichkeitstheories Verw. Gebiete, 63:147 235, 1983. 4] N. Bouleau. Constructions of Dirichlet structures. In J. Kral et al., editor, Potential theory ICPT 94, Kouty, Czech Republic, August 13 20, 1994, pages 9 25. de Gruyter, 1996. 5] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. de Gruyter, 1991. 6] E. Carlen and E. Pardoux. Differential calculus and integration by parts on Poisson space. In Stochastics, Algebra and Analysis in Classical and Quantum Dynamics, pages 63 73. Kluwer, 1990. 7] A. Dermoune, P. Krée, and L. Wu. Calcul stochastique non adapté par rapport à la mesure de Poisson. In Séminaire de Probabilités II, volume 1321 of Lecture Notes in Mathematics. Springer Verlag, 1988. 8] J. Mecke. Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie Verw. Geb., 9:36 58, 1967. 9] D. Nualart and J. Vives. A duality formula on the Poisson space and some applications. In E. Bolthausen, M. Dozzi, and F. Russo, editors, Seminar on Stochastic Analysis, Random Fields and Applications, Progress in Probability, pages 205 213, Ascona, 1993. Birkäuser. 10] J. Picard. Formules de dualité sur l espace de Poisson. Ann. Inst. H. Poincaré Probab. Statist., 32(4:509 548, 1996. 11] J. Picard. On the existence of smooth densities for jump processes. Probab. Theory Related Fields, 105:481 511, 1996. 12] S. Roelly and H. Zessin. Une caractérisation de champs gibbsiens sur un espace de trajectoires. C. R. Acad. Sci. Paris Sér. I Math., 321:1377 1382, 1995. 13] D. Stroock. The Malliavin calculus, a functional analytic approach. J. Funct. Anal., 44:212 257, 1981. 14] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semi-groups. Probability and Mathematical Statistics, 3:217 239, 1984. 15] A.S. Üstünel. Construction du calcul stochastique sur un espace de Wiener abstrait. C. R. Acad. Sci. Paris Sér. I Math., 305:279 282, 1987. 6