2A: Absorbing Materials Pt-by-Pt and GenOsc

Similar documents
Session 3B Using the Gen-Osc Layer to Fit Data

3B: Review. Nina Hong. U Penn, February J.A. Woollam Co., Inc. 1

2. Transparent Films. Neha Singh October 2010

Urbach tail extension of Tauc-Lorentz model dielectric function

Spectroscopic Ellipsometry Analysis of Opaque Gold Film for Epner Technology

Ellipsometry Tutorial

Optical Properties of Solid from DFT

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

VASE. J.A. Woollam Co., Inc. Ellipsometry Solutions

OPTICAL ANALYSIS OF ZnO THIN FILMS USING SPECTROSCOPIC ELLIPSOMETRY AND REFLECTOMETRY.

Measurement of Optical Constants (n,k) using MProbe

Supporting Information

Lecture 6 Optical Characterization of Inorganic Semiconductors Dr Tim Veal, Stephenson Institute for Renewable Energy and Department of Physics,

Solution Set 2 Phys 4510 Optics Fall 2014

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of

Analysis of optical spectra by computer simulation - from basics to batch mode

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

Review of Optical Properties of Materials

THREE MAIN LIGHT MATTER INTERRACTION

Model dielectric function of amorphous materials including Urbach tail

INTERACTION OF LIGHT WITH MATTER

ELSEVIER FIRST PROOFS

Supplementary Figure 1

PHOTOVOLTAICS Fundamentals

Optical Properties of Copper Phthalocyanine(CuPc)Thin Films

Spectroscopic Ellipsometry (SE) in Photovoltaic Applications

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

Chemistry 24b Lecture 23 Spring Quarter 2004 Instructor: Richard Roberts. (1) It induces a dipole moment in the atom or molecule.

Fall 2014 Nobby Kobayashi (Based on the notes by E.D.H Green and E.L Allen, SJSU) 1.0 Learning Objectives

THIN-FILM MEASUREMENT

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

ATMO 551a Fall Resonant Electromagnetic (EM) Interactions in Planetary atmospheres. Electron transition between different electron orbits

Microscopic Ohm s Law

The Dielectric Function of a Metal ( Jellium )

Overview - Previous lecture 1/2

The greenhouse effect

Review of Semiconductor Physics

Overview in Images. 5 nm

Optical and Photonic Glasses. Lecture 15. Optical Properties - Polarization, Absorption and Color. Professor Rui Almeida

Circular Dichroism & Optical Rotatory Dispersion. Proteins (KCsa) Polysaccharides (agarose) DNA CHEM 305. Many biomolecules are α-helical!

Near-Infrared to Vacuum Ultraviolet (VUV) Dielectric Properties of LaAlO 3

Lecture 21 Reminder/Introduction to Wave Optics

Absorption and scattering

ET3034TUx Utilization of band gap energy

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics

LEC E T C U T R U E R E 17 -Photodetectors

Supporting information for: Semitransparent Polymer-Based Solar Cells with. Aluminum-Doped Zinc Oxide Electrodes

CHAPTER 9 ELECTROMAGNETIC WAVES

Calculations of Dielectric Constant for AlGaInAs Quaternary Semiconductor Alloy in the Transparent Region and Above ( eV)

Minimal Update of Solid State Physics

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

Semiconductor Physics and Devices Chapter 3.

Supplementary Figures

Optical Properties of Thin Semiconductor Films

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Lecture 15: Optoelectronic devices: Introduction

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

1.1 FEATURES OF SPECTROSCOPIC ELLIPSOMETRY

Polarization. D =e i E=k i e o E =e o E+ P

Carrier Recombination

CHAPTER 9 FUNDAMENTAL OPTICAL PROPERTIES OF SOLIDS

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

SEMICONDUCTOR PHYSICS REVIEW BONDS,

Characterization of organic low-dielectric-constant materials using optical spectroscopy

Macroscopic dielectric theory

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Chapter 9. Electromagnetic waves

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Superconductivity Induced Transparency

OPTICAL PROPERTIES OF GALLIUM PHOSPHIDE (GaP)

Plasmonics: elementary excitation of a plasma (gas of free charges) nano-scale optics done with plasmons at metal interfaces

Lecture 10: Surface Plasmon Excitation. 5 nm

Part 1: What is XAFS? What does it tell us? The EXAFS equation. Part 2: Basic steps in the analysis Quick overview of typical analysis

Lecture 6: Continuum Opacity and Stellar Atmospheres

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination

Supplementary Materials

CVD-3 LFSIN SiN x Process

From here we define metals, semimetals, semiconductors and insulators

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

J. Price, 1,2 Y. Q. An, 1 M. C. Downer 1 1 The university of Texas at Austin, Department of Physics, Austin, TX

1. Creating a new material:

Optical Characteristics of Chemical Bath Deposited CdS Thin Film Characteristics within UV, Visible, and NIR Radiation

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Local and regular plasma oscillations in bulk donor type semiconductors

Discover the Difference

4. The interaction of light with matter

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Chapter 11: Dielectric Properties of Materials

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

ELEMENTARY BAND THEORY

Lecture 2 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basics of electromagnetic response of materials

CVD-3 MFSIN-HU-2 SiN x Mixed Frequency Process

Lecture 20 Optical Characterization 2

EECS130 Integrated Circuit Devices

Transcription:

2014 J.A. Woollam Co., Inc. www.jawoollam.com 1 2A: Absorbing Materials Pt-by-Pt and GenOsc Nina Hong U Penn, February 2014

2014 J.A. Woollam Co., Inc. www.jawoollam.com 2 Pt-by-Pt Fit UV Absorbing Films Point-by-Point Fit Procedure Different Fit Types

2014 J.A. Woollam Co., Inc. www.jawoollam.com 3 UV Absorbing Films Transparent films with onset of absorption in UV: Si 3 N 4, SiON, Resists, Organics, etc. 2.7 1.5 50 Experimental Data Index of refraction ' n ' 2.4 2.1 1.8 1.5 1.2 n k 1.2 0.9 0.6 0.3 Extinction Coefficient ' k ' in degrees 40 30 20 10 Exp E 70 Exp E 75 0.9 0.0 0 300 600 900 1200 1500 1800 Wavelength (nm) 0 0 300 600 900 1200 1500 1800 Wavelength (nm)

2014 J.A. Woollam Co., Inc. www.jawoollam.com 4 UV absorbing - Analysis Approach Ψ,Δ n,d DATA UNKNOWNS Ψ,Δ n,k,d DATA UNKNOWNS Fit n,d in transparent region. FIX d and fit n,k in absorbing region.

UV Absorbing Films Divide analysis into 2 parts: Step 1: Transparent Region. Range select data where film is transparent (k=0) typically longer wavelengths. Two unknowns n(l) & thickness. Two measured parameters (l) & D(l). Cauchy fit n(l) & thickness Step 2: Absorbing Region. Fix thickness from Step 1. Fit n,k on a wavelength-by-wavelength basis. 2014 J.A. Woollam Co., Inc. www.jawoollam.com 5

Index of refraction 'n' 2014 J.A. Woollam Co., Inc. www.jawoollam.com 6 Step 1: Cauchy fit Cauchy fit at long wavelengths determines thickness 1.80 0.25 1.70 1.60 1.50 Cauchy only valid in transparent region n k 0.20 0.15 0.10 0.05 Extinction Coefficient 'k' 1.40 0.00 0 200 400 600 800 1000 1200 1400 Wavelength in nm

2014 J.A. Woollam Co., Inc. www.jawoollam.com 7 Range Selecting Data User chooses angles, wavelengths and data types for fit Range Select menu from Experimental Data window. Choose Angles Choose Wavelengths Choose Data Types

2014 J.A. Woollam Co., Inc. www.jawoollam.com 8 Step 2: Point-by-Point Fit Point by Point fits data on a wvl-by-wvl basis. Determines n, k if thickness is correct from Step 1. Start at longest wavelengths where n is known from Cauchy fit and k=0. Fit progresses to shorter wavelengths.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 9 1. Delete All Parameters Set-Up for Point-by-Point Fit 2. Turn on n and k (new fit parameters)

2014 J.A. Woollam Co., Inc. www.jawoollam.com 10 Point-by-Point Fit 0 } Initial starting values. Where to start the fit. Previous points averaged together for next wavelength. 1 averages previous value(s) 0 ignores all previous values (uses current model values)

2014 J.A. Woollam Co., Inc. www.jawoollam.com 11 Extinction Coefficient ' k' Point-by-Point Fit Advantages Small features in n,k are identified. QUICK! EASY! 2.2 0.8 Index of refraction ' n' 2.0 1.8 1.6 1.4 n k 0.6 0.4 0.2 1.2 0.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Photon Energy (ev)

2014 J.A. Woollam Co., Inc. www.jawoollam.com 12 Disadvantages Point-by-Point Fit Requires film to be transparent over some measured wavelengths. Does not enforce Kramers-Kronig consistency (n,k may be unphysical). Noise in, D is incorporated in n, k. Requires accurate starting optical model. (*Hence, try to make accurate model for transparent region, account for microstructure if needed) KK consistency can be checked with oscillator model or KK layer.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 13 1 Example 1-Organic on Si Use Cauchy-Point by Point Fit procedure to determine optical constants over full spectral range.

2,3 UV Absorption Example 2-Organic on Si Example 3-Organic on Si (Use si_vuv.mat for substrate) Fit longer wavelengths with Cauchy. Fix Thickness and fit n,k using Point-by-Point method. Save environment file for Example 3 (for later use)! Are optical constants K-K consistent? 2014 J.A. Woollam Co., Inc. www.jawoollam.com 14

2014 J.A. Woollam Co., Inc. www.jawoollam.com 15 Data Fit Types All vary fit parameters to find best agreement with Experimental Data Normal Fit Works with ALL selected data simultaneously. Point-by-Point Fit Fit on wavelength-by-wavelength basis. Global Fit Searches Grid of starting values.

MSE 2014 J.A. Woollam Co., Inc. www.jawoollam.com 16 Normal Fit Varies fit parameters to determine the minimum (BEST FIT) Fits to all data (all wavelengths, all angles) simultaneously. Starting values are important. 100 Starting Point local minima 80 60 40 20 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Thick.1

2014 J.A. Woollam Co., Inc. www.jawoollam.com 17 Point-by-Point Fit Fits one wavelength at a time. Use in special cases 2 unknowns per wavelength. Fit parameters are wavelength dependent THICKNESS IS NOT WAVELENGTH DEPENDENT! Typical Use: Fit n,k with all other parameters fixed at known values.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 18 Point-by-Point Application Cauchy Fit to 3eV gives thickness and index. Cauchy doesn t extend well to absorbing region. 40 35 30 Model Fit Exp E 55 Generated and Experimental in degrees 25 20 15 10 5 0 2 4 6 8 10 Photon Energy (ev)

Extinction Coefficient ' k' Extinction Coefficient ' k' Normal Fit? Normal fit for n,k 2.80 Cauchy 'Starting value' Optical Constants 0.10 40 Normal Fit Result 2.0 Index of Refraction ' n' 2.70 2.60 2.50 2.40 2.30 n k 0.08 0.06 0.04 0.02 Index of Refraction ' n' 30 20 10 n k 1.5 1.0 0.5 2.20 0.00 0 2 4 6 8 10 Photon Energy (ev) 0 0.0 0 2 4 6 8 10 Photon Energy (ev) Normal Fit can easily get lost if material n,k are far away from Cauchy starting point. 2014 J.A. Woollam Co., Inc. www.jawoollam.com 19

2014 J.A. Woollam Co., Inc. www.jawoollam.com 20 Extinction Coefficient ' k' Point-by-Point Fit! Uses previous answer as good starting point for next wavelength. starting n,k 3.6 PBP Fit Result cauchy-1 Optical Constants 2.0 Index of Refraction ' n' 3.3 3.0 2.7 2.4 2.1 n k 1.5 1.0 0.5 1.8 0.0 0 2 4 6 8 10 Photon Energy (ev)

MSE 2014 J.A. Woollam Co., Inc. www.jawoollam.com 21 Finding the best MSE in degrees 100 80 60 40 20 Model Fit Exp E 40 Exp E 75 400 350 300 250 200 150 100 50 0 Photon Energy ( ev) local minima 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 global minimum 0 0.2 0.4 0.6 0.8 1 1.2 Film Thickness (mm) in in degrees 100 80 60 40 20 Model Fit Exp E 40 Exp E 75 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Photon Energy (ev)

2014 J.A. Woollam Co., Inc. www.jawoollam.com 22 Parm B How to get good start values? Global fit Searches a grid of starting points for the best match Each parameter has multiple start values in a wide range Useful to avoid local MSE minimums New users Complicated models with many parameters Thick films 2D grid Parm A

2014 J.A. Woollam Co., Inc. www.jawoollam.com 23 Global Fit in WVASE Check parameter fit box in model layer. Actual values of fit parameters do not matter. Click Edit Parms from Fit Window.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 24 Edit Parms for Global Fit 1. Highlight a fit parameter 2. Set minimum, maximum and number of guesses 3. Change Parm Coupling to update the changes 4. Repeat until all fit parameters have defined ranges and number of guesses 5. Perform global fit 1 2 5 3

2014 J.A. Woollam Co., Inc. www.jawoollam.com 25 Global Fit Guidelines Use ~50 guesses per 1 micron thickness range Use ~10-20 guesses for Index range of 1 (An) Use ~ 5 guesses for Non-ideality Avoid global fitting dispersion (Bn, Cn) Keep total number of guesses under 5000 Reduce Wavelengths and Angles to improve speed. NOTE: parameter limits will remain for Normal Fit unless adjusted.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 26 GenOsc Outline Why use Oscillator models? What are Oscillator models? Oscillating systems & resonant frequencies. Kramers-Kronig consistency How to use Oscillator models? WVASE Generalized oscillator ( Genosc ) layer. Fitting GenOsc models to Reference material file. Using GenOsc to fit real data (Afternoon Session 3B).

2014 J.A. Woollam Co., Inc. www.jawoollam.com 27 Why Use Oscillator Models? To check optical constants! Are both correct? How to decide? Cuves must be physically reasonable: Kramers-Kronig Consistency!

Oscillator Model Advantages Oscillator models are described as dispersion equations. Advantages: Reduces # of fit parameters Fewer parameters in the model. Flexible for similar samples. Can be saved on disk and used for later samples. Maintains/enforces K-K consistency. 2014 J.A. Woollam Co., Inc. www.jawoollam.com 28

2014 J.A. Woollam Co., Inc. www.jawoollam.com 29 The Dielectric Function ɛ(ω) The Dielectric Function e(e) or e(w), is the Dielectric Polarization as a function of Energy (or Frequency). e dc e transparent absorption absorption Regions of transparency, and regions of absorption. Where do these features come from? Why do we model these with Oscillator functions?

2014 J.A. Woollam Co., Inc. www.jawoollam.com 30 Optical Absorption Absorptions in the various spectral regions have different shapes & root causes. Electronic Transitions Molecular Vibrations Lattice Vibrations Free-carriers -13 Rutile TiO 2 e 1 25 13 0-25 -38 Lattice Vibrations Transparent IR UV to IR Visible Electronic Transitions UV e 1 e2 60 50 40 30 20 10 e 2-50 0 0.03 0.1 0.3 1 3 10 Photon Energy (ev)

2014 J.A. Woollam Co., Inc. www.jawoollam.com 31 Dielectric Polarization Internal E-field s response to externally applied E-Field. Different atoms/molecules/crystal structures have different dielectric polarizability. Single atom example No E-field Nucleus Electron cloud External E-field + - + Dipole Moment material External E-field + + + + + + + + + + + + + + + Molecular example Molecule (with Charge separation) - + External E-field - + Change in separation = change in Dipole Moment E e p Displacement D-field total ( in the material) D E e p E external e e o D

Oscillating Systems Light is an oscillating wave: Alternates positive and negative. Absorptions due to different mechanisms can be described by oscillators. Photon In = Oscillating electron cloud. F Af cos( wt) Oscillating systems: Have (w o ) natural frequency of vibration A driving force (F) causes oscillations at same frequency Oscillator amplitude & phase are usually different than driving force F F X X r r A r Mass on a spring cos( wt ) r r = response 2014 J.A. Woollam Co., Inc. www.jawoollam.com 32

2014 J.A. Woollam Co., Inc. www.jawoollam.com 33 Complex Representation of Oscillator Amplitude & Phase become Real & Imaginary curves. Amplitude affects peak height. Maximum at w o phase lag >90 Re{X r } becomes negative More damping (energy absorption) wider Im{X r } Instead of X r Acos( wt ) Amplitude Re{X} We use Xˆ X r A e r Re e ˆ r X r iwt To convert back to Real time response r = response w o Phase ( ) Im{X} Frequency (energy) 180 Time dependent term is usually left off Xˆ r Re A X r i ImX r cos i sin i t e w 0 w o w o Frequency (energy)

Kramers-Kronig Relation Real and imaginary parts depend on each other. Optical constants must satisfy KK-relation to be physical. Bumps make wiggles, the shape of n & k curves are related. e e 1 2 w w 2 we 2 w 1 P dw 0 2 2 w w 2w P 0 P means principal part e1 w 1 dw 2 2 w w Frequency (energy) e 1 e 2 n k Integral equation ties area under e 2 to shape of e 1 and vice-versa 2014 J.A. Woollam Co., Inc. www.jawoollam.com 34

2014 J.A. Woollam Co., Inc. www.jawoollam.com 35 e2 Ensemble model: Multiple Absorptions Optical constants can be modeled as a summation or ensemble of various kinds of oscillator functions. Multiple electronic transitions. Sum of oscillators used. Remains KK-consistent. 30 25 20 15 GaAs 30 30 10 5 Real(Dielectric Constant), e 1 20 10 0-10 e 1 e 2-20 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 Photon Energy (ev) 25 20 15 10 5 Imag(Dielectric Constant), e 2 0 1 2 3 4 Energy in ev 5 6

Break!! 2014 J.A. Woollam Co., Inc. www.jawoollam.com 36

2014 J.A. Woollam Co., Inc. www.jawoollam.com 37 GenOsc Outline Why use Oscillator models? What are Oscillator models? Oscillating systems & resonant frequencies. Kramers-Kronig consistency How to use Oscillator models? WVASE Generalized oscillator ( Genosc ) layer. Fitting GenOsc models to Reference material file. Using GenOsc to fit real data (Afternoon Session 3B).

2014 J.A. Woollam Co., Inc. www.jawoollam.com 38 WVASE Layer Genosc.mat Oscillator functions that describe e 1 & e 2 ( n & k ). KK-consistent! e 1 section Reference/graph section e 2 section & oscillator list

2014 J.A. Woollam Co., Inc. www.jawoollam.com 39 Genosc: Transparent Reference Spectra Load Reference Absorbing Transparent Add oscillators and fit to match e2 (only) Match e1 (only) with offset and poles Good Fit?

2014 J.A. Woollam Co., Inc. www.jawoollam.com 40 Transparent: Sellmeier Model Describe n(l) of transparent materials. e 2 2 1 j n A, e 2 2 2 k j l l0 j Kramers - Kronig consistent B l 0 e dc e transparent

Transparent: Sellmeier Poles Adds dispersion (curvature) to both ends Absorptions must be outside of spectral range 25 13 Valid spectral range 0-13 -25-38 (transparent region) e 1 reference e 1 Sellmeier -50 0.03 0.1 0.3 1 3 10 Photon Energy (ev) Easier to use photon energy scale when describing oscillators curves are symmetric. 2014 J.A. Woollam Co., Inc. www.jawoollam.com 41

2014 J.A. Woollam Co., Inc. www.jawoollam.com 42 Genosc Window: e 1 Section Poles and e1 offset used to match e 1 shape. 3.5 3.0 2.5 2.0 1.5 Pole #2 dispersion e 1 Pole #1 dispersion 1.0 0.5 e1 Offset 0.0 1.0 2.0 3.0 4.0 5.0 Photon Energy (ev)

Genosc Modeling: Transparent Films 1. Fit Pole #1 Amplitude 2. Add Pole #1 Position 3. Add e1 offset. 4. Add Pole #2 Amplitude (should stay zero or very small) (Keep if improves fit, but remove if MSE stays the same or fit goes unphysical.) 2014 J.A. Woollam Co., Inc. www.jawoollam.com 43

2014 J.A. Woollam Co., Inc. www.jawoollam.com 44 Varying Pole Magnitude Adjusting e1 offset moves curve up and down. Pole 1 adds upward curvature, pole 2 downward.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 45 4 Example 4-SiO2.mat You can open mat files in any models. Use Examples 4-SiO2.mat file as reference material in GenOsc. Fit with Genosc.mat. Fit Pole #1, Pole #2, and e1 offset.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 46 1) Load SiO2.mat as reference material. 2) Select Fit e1 only. Fitting Transparent Reference Materials: SiO 2 example 3) Note shape of green e 1 curve: Dispersion upturn at hi-ev. Pole #1. Small Dispersion downturn at low ev. Pole #2.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 47 Fitting Transparent Reference Material SiO 2 example (part 1) 1) Enter different values in Pole#1 Position(eV) & Magnitude Observe how these values change curvature of model e 1 (black curve). 2) Enter different values for e1 Offset Observe how this value changes the model s e 1 constant offset.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 48 Fitting Transparent Reference Material SiO 2 example (part 2) 1) Enter small values (<0.5) into Pole#2 Magnitude (do not change Position value from 0.001eV) Note how different values change curvature of model e 1 curve (black curve) downward at low energies.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 49 Fitting Transparent Reference Material: SiO 2 example (part 3) 1) Approximate the green reference curve by entering appropriate values in the Pole#1, Pole#2, & e1 Offset quantities. 2) Check Pole#1 Position & Magnitude, Pole#2 Magnitude, & e1 Offset as fit parameters. 3) Click Fit Osc. to Ref. button to start fit Final fit should look something like figure below.

Sellmeier: General Guidelines Do not fit Position of pole if Amplitude = 0. Do not fit Position of Pole#2. Pole#1 and e1-offset often correlated Both increase index, but Pole#1 Amplitude also adds curvature (dispersion). Often possible to fix either pole 1 position or pole 1 magnitude. 2014 J.A. Woollam Co., Inc. www.jawoollam.com 50

2014 J.A. Woollam Co., Inc. www.jawoollam.com 51 5-7 More Transparent mat files Example 5-Al2O3.mat Example_6-CaF2.mat Example_7-f3_Schott.mat (from 0.6 to 3.7 ev) Fit Pole #1, Pole #2, and e1 offset.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 52 UV-Absorbing Reference Materials Load Reference Absorbing Transparent Add oscillators and fit to match e2 (only) Match e1 (only) with offset and poles Good Fit?

2014 J.A. Woollam Co., Inc. www.jawoollam.com 53 Types of Absorption, Types of Oscillators Different oscillators used for different absorptions. Absorption features & Suggested oscillators: Organics and Dielectrics: UV Resonant Absorptions. Gaussian, Tauc-Lorentz, Cody-Lorentz. Metals: Free electron absorption. Drude or Lorentz oscillator functions. Semiconductors: Electronic Transitions. Direct Bandgap: Psemi-E0 Indirect Gap / Amorphous: Tauc-Lorentz or Cody-Lorentz. Higher Energy Transitions: Gaussian or PSEMI.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 54 Lorentz Oscillator Classic response function derived in textbooks. Has long absorption tails, can cause unwanted absorption in transparent regions. Works best for metals (where absorption exists over all wavelengths). Also works well for IR phonons (crystal lattice vibrations). e 1 1.6 1.4 1.2 1.0 0.8 0.6 0.4 1.0 2.0 3.0 4.0 0.0 5.0 Photon Energy (ev) ~ e E 2 0 E 0 A A E 2 e 1 e 2 ie 1.0 0.8 0.6 e 2 0.4 0.2 All oscillators have Amplitude (A), Position (E 0 ), and width ()

2014 J.A. Woollam Co., Inc. www.jawoollam.com 55 Drude Model: Lorentz Oscillator for Metals Lorentz oscillator with E o = 0. Describes free carriers because no restoring force(set E 0 =0 in Lorentz). Use for Metals, doped semiconductors, and conductive dielectrics. Optical method for Noncontact measurement of resistivity (conductivity). e 1 1.0 0.9 0.8 0.7 0.6 0.0 1.0 2.0 3.0 4.0 5.0 Photon Energy (ev) ~ e E 2 A i e 1 e 2 E 0.2 0.15 0.1 e 2 0.05

2014 J.A. Woollam Co., Inc. www.jawoollam.com 56 Shorter absorption tails than Lorentz. - Absorption drops rapidly to 0. Use for: Materials which become transparent at longer wavelengths. multiple UV absorptions in amorphous materials. Infrared absorptions in amorphous materials. Gaussian Oscillator e 1 e 1.8 1.5 1.2 0.9 0.6 0.3 1.0 2.0 3.0 4.0 0.0 5.0 Photon Energy (ev) 2 A e n 2 EE Brn n 2 A n2 e P 1 2 2 R g e E n e d e 1 e 2 EE Brn n 1.0 0.8 0.6 0.4 0.2 2 e 2

2014 J.A. Woollam Co., Inc. www.jawoollam.com 57 Tauc-Lorentz Model Includes band-gap energy (E g ), with NO absorption allowed below gap Energy. Goes exactly to zero. e 1 2.0 1.8 1.6 1.4 1.2 1.0 0.8 e 1 e 2 1.0 0.8 0.6 0.4 0.2 e 2 Good for amorphous semiconductors & other UV absorptions. Asymmetric shape is more accurate for amorphous materials. 0.6 1.0 2.0 3.0 4.0 0.0 5.0 Photon Energy (ev) G.E. Jellison, Jr. and F.A. Modine, Appl. Phys. Lett. 69, 371 (1996), Erratum, Appl. Phys. Lett. 69, 2137 (1996)

2014 J.A. Woollam Co., Inc. www.jawoollam.com 58 Cody-Lorentz Model Ferlauto & Collins (2002). Includes band-gap E g, NO absorption allowed below gap energy. Goes exactly to zero. Adds extra flexibility to fit shape of absorption edge. Extra fit term E p Urbach tail function also incorporated for defect absorption. e 1 2.0 1.8 1.6 1.4 1.2 1.0 0.8 E g 0.6 1.0 2.0 3.0 4.0 0.0 5.0 Photon Energy (ev) e 1 e 2 A.S. Ferlauto et. al., J. Appl. Phys. 92, No. 5, 2429 (2002). 1.0 0.8 0.6 0.4 0.2 e 2 Asymmetric shape is more accurate for amorphous materials.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 59 e 2 Section: Oscillator Types Choose oscillator Type and Style, then Add oscillator. Use to describe e 2 shape of material. Add/Delete Oscillator(s). Osc Up/Down buttons.

e 2 Section: Oscillator List Details of entire oscillator collection. Can adjust or fit each parameter. 2014 J.A. Woollam Co., Inc. www.jawoollam.com 60

Build Genosc Feature Reference materials are often helpful in building Genosc References can come from Publications tabulated optical constants data base Similar material Pt by pt fit results 2014 J.A. Woollam Co., Inc. www.jawoollam.com 61

2014 J.A. Woollam Co., Inc. www.jawoollam.com 62 Display Window Displays e 2 and e 1*, of model (Black curves). Displays Reference Material (if present) e 2 (in red) and e 1 * (in green), Displays e 2 (in blue) of currently highlighted oscillator. Dielectric Function Display Window:

2014 J.A. Woollam Co., Inc. www.jawoollam.com 63 8 Example 8-SiNx pbp.mat Fit with Genosc.mat. Fit Tauc-Lorentz Oscillator for absorption. Fit Pole #1, Pole #2, and e1 offset for index.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 64 Fitting UV-Absorbing Reference Material Silicon Nitride example 1) Load Demo_2_sinx pbp.mat as reference material 2) Select Fit e2 only (we are going to fit e2 first, then e1). 3) Note red e 2 curve looks like a Tauc-Lorentz shape.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 65 Fitting UV-Absorbing Reference Material Adding Oscillators 1) Select Tauc-Lorentz as oscillator type and add Tauc-Lorentz oscillator Enter the approximate broadening prior to Adding Oscillator (4 ev) The Eg value might need to be manually set to the right value (3 ev in this case). 2) Change oscillator parameters until an approximate fit is achieved (see figure at right).

2014 J.A. Woollam Co., Inc. www.jawoollam.com 66 Fitting UV-Absorbing Reference Material Preparation before Referencee 2 fit 3) Check all four fit parameters for Tauc-Lorentz oscillator. 4) Prior to fitting, the GenOsc window should look similar to figure below.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 67 Fitting UV-Absorbing Reference Material Silicon Nitride example, e 2 fit to Ref. 5) Click on Fit Osc. to Ref. window & fit Ref. Mat. 6) After fit, the GenOsc window should look similar to below.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 68 Fitting UV-Absorbing Reference Material Silicon Nitride example, e 1 fit preparation 7) Select e1 Offset as fit parameter & Fit e1 only button 8) With e1 Offset = 1.5, window should look similar to below.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 69 Fitting UV-Absorbing Reference Material Silicon Nitride example, after e 1 & e 2 fit 9) Click on Fit Osc. to Ref. window & fit Ref. Mat. (NOTE: fitting e 1 only) 10) After fit, window should look similar to figure below. 11) Observe post-fit e1 Offset & Tauc-Lorentz values.

2014 J.A. Woollam Co., Inc. www.jawoollam.com 70 9,10 Genosc fit UV Absorbing Materials Example 9-a-si.mat Example 10-SiON.mat NEEDS TWO OSCILLATORS!!

GenOsc Summary: Fitting Reference Spectra Load Reference Absorbing Transparent Add oscillators and fit to match e2 (only) Match e1 (only) with E-inf and Poles Genosc.mat layer useful for both transparent and absorbing materials. Good Fit? 2014 J.A. Woollam Co., Inc. www.jawoollam.com 71

Summary 1. Data Analysis Strategy for UV absorbing Films 2. Pt-by-Pt Fit Procedure 3. Understand oscillating systems. Mass on spring, etc. Resonant frequency, Amplitude, etc. 4. Optical absorption as oscillators : Light interacts with electrons. Kramers-Kronig relation, K-K consistency. 5. Optical Dispersion Functions : Oscillator Models Lorentz, Gaussian, Tauc-Lorentz, Drude many types available. 6. Fitting reference data sets. Used WVASE32 Genosc layer to fit functions to reference values. 2014 J.A. Woollam Co., Inc. www.jawoollam.com 72

Lunch!! 2014 J.A. Woollam Co., Inc. www.jawoollam.com 73