Soluţii juniori., unde 1, 2

Similar documents
Barem de notare clasa a V-a

Divizibilitate în mulțimea numerelor naturale/întregi

Teorema Reziduurilor şi Bucuria Integralelor Reale Prezentare de Alexandru Negrescu

ON THE QUATERNARY QUADRATIC DIOPHANTINE EQUATIONS (II) NICOLAE BRATU 1 ADINA CRETAN 2

Gradul de comutativitate al grupurilor finite 1

Procedeu de demonstrare a unor inegalităţi bazat pe inegalitatea lui Schur

The 2017 Danube Competition in Mathematics, October 28 th. Problema 1. Să se găsească toate polinoamele P, cu coeficienţi întregi, care

PROBLEME DIVERSE lecţie susţinută la lotul de 13 de Andrei ECKSTEIN Bucureşti, 25 mai 2015

O V E R V I E W. This study suggests grouping of numbers that do not divide the number

1.3. OPERAŢII CU NUMERE NEZECIMALE

FORMULELE LUI STIRLING, WALLIS, GAUSS ŞI APLICAŢII

Ecuatii si inecuatii de gradul al doilea si reductibile la gradul al doilea. Ecuatii de gradul al doilea

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

ARTICOLE ŞI NOTE MATEMATICE

Solutions of APMO 2017

2010 Shortlist JBMO - Problems

Baltic Way 2003 Riga, November 2, 2003

36th United States of America Mathematical Olympiad

SOLUTIONS FOR IMO 2005 PROBLEMS

THE UNIVERSITY OF TORONTO UNDERGRADUATE MATHEMATICS COMPETITION. Sunday, March 14, 2004 Time: hours No aids or calculators permitted.

Winter Mathematical Competition Varna, February, 9-11, 2007

37th United States of America Mathematical Olympiad

Sisteme cu logica fuzzy

11 th Philippine Mathematical Olympiad Questions, Answers, and Hints

EGMO 2016, Day 1 Solutions. Problem 1. Let n be an odd positive integer, and let x1, x2,..., xn be non-negative real numbers.

XX Asian Pacific Mathematics Olympiad

2017 Harvard-MIT Mathematics Tournament

RMT 2013 Geometry Test Solutions February 2, = 51.

nx + 1 = (n + 1)x 13(n + 1) and nx = (n + 1)x + 27(n + 1).

Teoreme de Analiză Matematică - I (teorema Weierstrass-Bolzano) 1

2003 AIME Given that ((3!)!)! = k n!, where k and n are positive integers and n is as large as possible, find k + n.

Numere prime. O selecţie de probleme pentru gimnaziu

SMT 2018 Geometry Test Solutions February 17, 2018

SOLUTIONS FOR 2012 APMO PROBLEMS

International Mathematics TOURNAMENT OF THE TOWNS

International Mathematical Olympiad. Preliminary Selection Contest 2004 Hong Kong. Outline of Solutions 3 N

41st International Mathematical Olympiad

IMO Training Camp Mock Olympiad #2 Solutions

2013 University of New South Wales School Mathematics Competition

1. Suppose that a, b, c and d are four different integers. Explain why. (a b)(a c)(a d)(b c)(b d)(c d) a 2 + ab b = 2018.

Created by T. Madas 2D VECTORS. Created by T. Madas

The 33 rd Balkan Mathematical Olympiad Tirana, May 7, 2016

International Mathematical Olympiad. Preliminary Selection Contest 2017 Hong Kong. Outline of Solutions 5. 3*

Geometry Problem Solving Drill 08: Congruent Triangles

15th Bay Area Mathematical Olympiad. BAMO Exam. February 26, Solutions to BAMO-8 and BAMO-12 Problems

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

International Mathematical Olympiad. Preliminary Selection Contest 2011 Hong Kong. Outline of Solutions

OLYMON. Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto. Issue 10:3.

GAZETA MATEMATICĂ SERIA A. ANUL XXXVI (CXV) Nr. 1 2/ 2018 ARTICOLE. Computing exponential and trigonometric functions of matrices in M 2 (C)

TRIANGLES CHAPTER 7. (A) Main Concepts and Results. (B) Multiple Choice Questions

Recreational Mathematics

2007 Shortlist JBMO - Problems

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

2008 Euclid Contest. Solutions. Canadian Mathematics Competition. Tuesday, April 15, c 2008 Centre for Education in Mathematics and Computing

Solutions for November. f(x + f(y)) = f(x) + y

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Winter 2012 Quiz Solutions

IMO Training Camp Mock Olympiad #2

Practice Test Student Answer Document

Trigonometry. Sin θ Cos θ Tan θ Cot θ Sec θ Cosec θ. Sin = = cos = = tan = = cosec = sec = 1. cot = sin. cos. tan

BC Exam Solutions Texas A&M High School Math Contest October 22, 2016

CBSE CLASS-10 MARCH 2018

Solutions. cos ax + cos bx = 0. a sin ax + b sin bx = 0.

HMMT November 2015 November 14, 2015

Solutions to CRMO-2003

First selection test. a n = 3n + n 2 1. b n = 2( n 2 + n + n 2 n),

Olimpiada Matemática de Centroamérica y el Caribe

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

Section 5.1. Perimeter and Area

Answer : (In a circle the angle between the radii through two points and angle between the tangents at these points are supplementary.

INTERNATIONAL MATHEMATICAL OLYMPIADS. Hojoo Lee, Version 1.0. Contents 1. Problems 1 2. Answers and Hints References

Mathematics. Mock Paper. With. Blue Print of Original Paper. on Latest Pattern. Solution Visits:

Canadian Open Mathematics Challenge

1. Prove that for every positive integer n there exists an n-digit number divisible by 5 n all of whose digits are odd.

UNITATEA DE ÎNVĂȚARE 3 Analiza algoritmilor

UNCC 2001 Comprehensive, Solutions

Joe Holbrook Memorial Math Competition

USA Mathematical Talent Search Round 3 Solutions Year 20 Academic Year

14 th Annual Harvard-MIT Mathematics Tournament Saturday 12 February 2011

32 nd United States of America Mathematical Olympiad Recommended Marking Scheme May 1, 2003

Visit: ImperialStudy.com For More Study Materials Class IX Chapter 12 Heron s Formula Maths

3. Applying the definition, we have 2#0 = = 5 and 1#4 = = 0. Thus, (2#0)#(1#4) = 5#0 = ( 5) 0 ( 5) 3 = 2.

1. The sides of a triangle are in the ratio 3 : 5 : 9. Which of the following words best describes the triangle?

Nozha Directorate of Education Form : 2 nd Prep. Nozha Language Schools Ismailia Road Branch

First selection test

Baltic Way 2016 Solutions

Exercises for Unit V (Introduction to non Euclidean geometry)

HMMT November 2012 Saturday 10 November 2012

Suggested problems - solutions

Nozha Directorate of Education Form : 2 nd Prep

1 / 23

Problems and Solutions

2015 Canadian Intermediate Mathematics Contest

LLT Education Services

SMT 2011 General Test and Solutions February 19, F (x) + F = 1 + x. 2 = 3. Now take x = 2 2 F ( 1) = F ( 1) = 3 2 F (2)

Figure 1: Problem 1 diagram. Figure 2: Problem 2 diagram

Sydney University Mathematical Society Problems Competition Solutions.

INMO-2001 Problems and Solutions

2007 Mathematical Olympiad Summer Program Tests

PURPLE COMET MATH MEET April 2012 MIDDLE SCHOOL - SOLUTIONS

Transcription:

Soluţii juniori Problema 1 Se consideră suma S x1x x3x4... x015 x016 Este posibil să avem S 016? Răspuns: Da., unde 1,,..., 016 3, 3 Termenii sumei sunt de forma 3 3 1, x x x. 3 5 6 sau Cristian Lazăr 3 5 6. Să spunem că sunt a termeni de primul tip, b termeni de al doilea tip şi c de al treilea tip. Avem ab c 1008 şi a b5 6 c5 6 016, echivalent cu a 5b 5c 016 6(c b). De aici deducem că b c. Obţinem ab 1008 şi a10b 016. Prin urmare a 756 şi bc 16. Problema Determinați numerele naturale n 1 care au proprietatea că, pentru orice divizor d 1 al lui n, numerele d d Răspuns: ;3;6 n. 1 și d d 1 sunt prime. Lucian Petrescu Arătăm mai întâi că n este liber de pătrate. Dacă prin absurd ar exista d 1, astfel încât d n și d n, atunci conform ipotezei ar rezulta că numărul 4 4 d d 1 d d 1 d d 1, contradicţie. 3 Dar Deci n p1 p ps, cu s * și p1 p ps numere prime. d d 1 d d 1 este prim. Fie p 5 un număr prim, divizor al lui n. Atunci p 1 (mod6) sau p 5 (mod6). Dacă p 1 (mod6) obținem că numărul p p1 3mod6 (și p p1 3) este compus, fals. Dacă p 5 (mod6) rezultă că numărul p p1 3mod6 (și p p1 3) este compus, fals. Așadar, n nu are factori primi 5 cele trei valori ale lui n verificând ipoteza problemei. p de unde rezultă că p ;3, adică n ;3;6 i, toate

Problema 3 Se consideră un triunghi ABC, cu AB AC, în care punctul I este intersecţia bisectoarelor şi punctul M este mijlocul laturii [BC]. Dacă IA IM, determinaţi cea mai mică măsură posibilă a unghiului AIM. Răspuns: 150. FieD AI BC. Deoarece AB AC, atunci DBM şi m ACB m ABC. Avem midb mdac m ACB mdab m ABD m ADC, deci unghiul IDB [] este ascuţit. Fie F şi E proiecţiile punctului I pe dreptele AB, respectiv BC. E BD BM. Deducem că Cum IBF IBE (CU) şi IFA IEM (IC), BC rezultă că BA BM şi IBA IBM. Avem mmid midb mimb mdac m ACD miab m ACD Ca urmare, m AIM 180 m ACB.(1) Fie H proiecţia punctului B pe dreapta AC. Rezultă că Deducem că m( ACB) 30. () Din (1) şi () rezultă că m AIM 180 30 150.. BC BH AB.

Problema 4 Un pătrat unitate este îndepărtat din colţul unui pătrat n n, unde n, n. Demonstraţi că suprafaţa rămasă poate fi pavată cu dale formate din 3 sau 5 pătrate unitate de forma celor din figurile de mai jos: [] Vom numi un pătrat descris de enunţ pătrat ciobit. m,3,4,5,6,7 orice pătrat ciobit mmpoate fi pavat ca mai Mai întâi constatăm că, pentru jos. Ȋn plus, dacă * p, orice dreptunghi 6p m, cu m,3,4,5,6,7, precum şi pătratul 6p 6p pot fi pavate cu dreptunghiuri de tipul Pentru oricare n, n 8, există k * astfel încât n 6k m Prin urmare, orice pătrat ciobit n n, unde m,3,4,5,6,7.,,3,4,5,6,7 se va obţine din pătratul ciobit m m care se bordează cu două dreptunghiuri 6k m şi un pătrat 6k 6k astfel: m,

The 016 Danube Competition in Mathematics, October 9 th 1. Let ABC be a triangle, D the foot of the altitude from A and M the midpoint of the side BC. Let S be a point on the closed segment DM and let P, Q the projections of S on the lines AB and AC respectively. Prove that the length of the segment P Q does not exceed one quarter the perimeter of the triangle ABC. Adrian Zahariuc Solution. From the cyclic quadrilateral AP SQ, whose circumcircle has diameter AS, P Q = AS sin P AQ. So, the largest value of P Q is obtained when AS is largest, that is when S = M. In the case S = M, denote E, F the midpoints of the segments AB, respectively AC and G, H the midpoints of the segments ME, respectively MC. Then P Q P G + GH + HQ = 1 (EM + EF + F M) = 1 4 P ABC, as desired. Equality occurs if and only if ABC is equilateral.. A bank has a set S of codes for its customers, in the form of sequences of 0 and 1, each sequence being of length n. Two codes are called close if they are different at exactly one position. It is known that each code from S has exactly k close codes in S. a) Show that S has an even number of elements. b) Show that S contains at least k codes. Solution. Start by noticing that we can suppose that S contains the nil code (0, 0,..., 0): otherwise take a code x S and replace S with the set S = x + S = {x + y y S}, where addition is taken mod. Then S and S have the same cardinal and S fulfills the same condition as S. In the sequel we will denote w(x) the number of non-nil components of the code x and S i = {x S w(x) = i}. a) Consider the bipartite graph G = A B, where the vertices are the codes, A = {x S w(x) = even}, B = {x S w(x) = odd} and an edge between two vertices exists if and only if the corresponding codes are close. Count the edges of this graph: from A emerge k A edges and from B emerge k B edges. But k A = k B, hence A and B have the same number of vertices, whence the conclusion. b) Notice first that S 0 = 1. Take now x S i. The set S i 1 has at most i codes close to x and the set S i+1 has at least k i codes close to x. On the other hand, each code from S i+1 has at most i + 1 close codes in the set S i. Consider now the (bipartite) subgraph S i S i+1. We count the number N of its edges twice: first we count the edges emerging from S i to find that N (k i) S i, then we count the edges emerging from S i+1 to find that N (i + 1) S i+1. So, (i + 1) S i+1 (k i) S i. The last inequality yields inductively to S i C i k for every 0 i k, whence S k.

3. Let n > 1 be an integer and a 1, a,..., a n be positive integers with sum 1. a) Show that there exists a constant c 1/ so that 1 + (a 0 + + 1 ) c, where a 0 = 0. b) Show that the best value of c is at least π/4. Solution. For the first part, notice that 1 + (a 0 + + 1 ) (1 + a 0 + a 1 + + 1 ). Since (1 + a 0 + a 1 + + 1 ) (1 + a 0 + a 1 + + 1 )(1 + a 0 + a 1 + + ) 1 1 =, 1 + a 0 + a 1 + + 1 1 + a 0 + a 1 + the relation follows by summing. For the second part we denote x k = a 0 + a 1 + + and use the inequality x k+1 x k 1 + x k arctan x k+1 arctan x k, valid for 1 x k+1 x k 0. This is equivalent to tan x k+1 x k 1+x k x k+1 x k 1+x k x k+1, and results from tan x x for x (0, π ). Remark. Taking = 1/n, k = 1,,..., n and n, a limit argument shows that the value c = π/4 cannot be improved. 4. Prove that there exist only finitely many positive integers n such that ( n ) 1 + 1 + 3 + 3... n + n is an integer. Adrian Zahariuc Solution. Assume that n is sufficiently large. We claim that there exists a prime number p n such that p does not divide k + n, for any integer k. Lemma. There exist coprime positive integers a, b of different parities such that 3n (a + b ) 4n. Proof. We may take a = 1 and b even maximal such that a + b n, etc. Note that N = 4n (a + b ) 3(mod4), so we can find a prime factor p of N which is of the form 4k + 3, since N 0. We claim that p satisfies the desired property. Recall that for a prime number p 3(mod4), if p divides x + y, then p divides both x and y. Assume that there was some k such that p divides k + n. Then p (k) + (a + b ), hence p a + b, since p 3(mod4). Then, p a and p b, contradicting gcd(a, b) = 1.