Background Free Search for 0 Decay of 76Ge with GERDA

Similar documents
Search for 0νββ-decay with GERDA Phase II

Results on neutrinoless double beta decay of 76 Ge from the GERDA experiment

GERDA & the future of 76 Ge-based experiments

Prospects for kev-dm searches with the GERDA experiment

Investigation and development of the suppression methods of the 42 K background in LArGe

L esperimento GERDA. GERDA - gruppo INFN. L Aquila, Congresso SIF, 30/09/2011. OUTLINE: GERDA Motivations GERDA Status GERDA Future plans

First results on neutrinoless double beta decay of 82 Se with CUPID-0

Search for Neutrinoless Double Beta Decay in the GERDA Experiment

The GERmanium Detector Array

The Gerda Experiment for the Search of Neutrinoless Double Beta Decay

Two Neutrino Double Beta (2νββ) Decays into Excited States

The GERDA Experiment:

Results from GERDA Phase I and status of the upgrade to Phase II. Stefan Schönert (TU München) on behalf of the GERDA collabora;on

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

Experimental Searches for Neutrinoless Double-Beta Decays in 76-Ge Alan Poon

The GERDA Phase II detector assembly

Background rejection techniques in Germanium 0νββ-decay experiments. ν=v

A Liquid Argon Scintillation Veto for the GERDA Experiment

Results on neutrinoless double beta decay of 76 Ge from GERDA Phase I

Status of the CUORE and CUORE-0 experiments at Gran Sasso

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

MC Benchmarks for LAr Instrumentation in GERDA

Status of the CUORE and CUORE-0 experiments at Gran Sasso

The search for neutrino-less double beta decay with LNGS: status and perspectives

Neutrinoless Double Beta Decay for Particle Physicists

E15. Background suppression in GERDA Phase II. and its study in the LARGE low background set-up

Yoann KERMAÏDIC PSeGe workshop

a step forward exploring the inverted hierarchy region of the neutrino mass

Cosmogenic background for the GERDA experiment. Luciano Pandola INFN, Laboratori del Gran Sasso, Italy

cryogenic calorimeter with particle identification for double beta decay search

GERDA Status and Perspectives

-> to worldwide experiments searching for neutrinoless double beta decay

Wavelength Shifting Reflector Foils for Liquid Ar Scintillation Light

Neutron Activation of 76Ge

Phase II upgrade of the Gerda experiment for the search of neutrinoless double beta decay

Coincidence measurements for Gerda Phase II

the first prototype for a scintillating bolometer double beta decay experiment.

BEGe Detector studies update

GERDA Phase II detectors: behind the production and characterisation at low background conditions

Double Beta Present Activities in Europe

Status of the CUORE experiment at Gran Sasso

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

THE CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS: STATUS AND PROSPECTS

Background by Neutron Activation in GERDA

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

Majorana Double Beta Decay Search Project (Majorana Demonstrator)

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

GERDA Phase II: status and prospects

The GERDA Neutrinoless double beta decay experiment

Neutron Activation of 74 Ge and 76 Ge

An active-shield method for the reduction of surface contamination in CUORE

PROJECT STATUS AND PERSPECTIVES

LUCIFER. Marco Vignati INFN Roma XCVIII congresso SIF, Napoli, 21 Settembre 2012

NEMO-3 latest results

Shielding Strategies. Karl Tasso Knöpfle MPI Kernphysik, Heidelberg

STATUS OF THE CALIBRATION

Results from EXO 200. Journal of Physics: Conference Series. Related content PAPER OPEN ACCESS

Excited State Transitions in Double Beta Decay: A brief Review

arxiv: v1 [nucl-ex] 20 Dec 2008

arxiv: v1 [physics.ins-det] 1 Aug 2017

arxiv: v1 [physics.ins-det] 23 Oct 2007

F. Cappella INFN - LNGS

Search for Neutrinoless Double- Beta Decay with CUORE

Status and Perspectives of the COBRA-Experiment

First results on neutrinoless double beta decay from the GERDA experiment

Status of the AMoRE experiment searching for neutrinoless double beta decay of 100 Mo

DOUBLE BETA DECAY OF 106 Cd - EXPERIMENT TGV (Telescope Germanium Vertical) EXPERIMENT SPT (Silicon Pixel Telescope)

Status of the GERDA experiment

Pulse Shape Analysis

PPC Ge detectors for dark matter, neutrino-less double beta decay and CNS measurements

Search for Low Energy Events with CUORE-0 and CUORE

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Neutrinoless double beta decay with 76Ge. Bernhard Schwingenheuer Max-Planck-Institut für Kernphysik, Heidelberg

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Background Modeling and Materials Screening for the LUX and LZ Detectors. David Malling Brown University LUX Collaboration AARM Meeting February 2011

AMoRE 0 experiment using low temperature 40 Ca 100 MoO 4 calorimeters

How can we search for double beta decay? Carter Hall University of Maryland

Neutrinoless Double-Beta Decay

Is the Neutrino its Own Antiparticle?

Direct dark matter search using liquid noble gases

The Majorana Neutrinoless Double-Beta Decay Experiment

Studies of the XENON100 Electromagnetic Background

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

Background and sensitivity predictions for XENON1T

Status of Cuore experiment and last results from Cuoricino

The NEXT-100 experiment for Neutrino-less Double Beta decay: Main features, Results from Prototypes and Radiopurity issues.

Searching for neutrino- less double beta decay with EXO- 200 and nexo

arxiv: v1 [nucl-ex] 14 May 2013

The NEMO experiment. Present and Future. Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

Par$cle and Neutrino Physics. Liang Yang University of Illinois at Urbana- Champaign Physics 403 April 15, 2014

- The CONUS Experiment - COherent elastic NeUtrino nucleus Scattering

Björn Lehnert. Search for double beta decays of palladium isotopes into excited states

New results of CUORICINO on the way to CUORE

The LUCIFER project current status and perspective!!!

Status of the CUORE and CUORE-0 Experiments at Gran Sasso

The DarkSide-50 Outer Detectors

The energy calibration system of the CUORE double beta decay bolometric experiment

Scintillating bolometers for the LUCIFER project. Luca Pattavina INFN-Laboratori Nazionali del Gran Sasso

Transcription:

Background Free Search for 0 Decay of 76Ge with GERDA Victoria Wagner for the GERDA collaboration Max-Planck-Institut für Kernphysik Rencontres de Moriond, Electro Weak La Thuile, March 24 2017

The GERDA Collaboration: searching for neutrinoless double beta decay of 76Ge 2

Signature & Experimental Challenges Measure sum energy of electrons T Observable: (T 2ν 1/ 2 0 ν 1 1/ 2 zero background regime ) N0 ν T = 1.9 10 yr M t background, i.e. statistical fluctuation limited scenario T 21 0ν 1/ 2 0ν 1/ 2 M t Δ E BI M t: exposure [kg yr], ΔE: energy resolution, BI: background index [counts/(kev kg yr)] Need to achieve < 1 bck event in ROI excellent energy resolution 3

Germanium Detectors Measure sum energy of electrons -ν -ν 2νββ e---- e- 2ν e- ++ + h+ 21 T 1/ 2= 1.9 10 yr High Purity Germanium (HPGe) Detectors 3-4 kev FWHM at Q = 2039 kev (0.2%) HPGe detectors isotopically enriched in Ge (~87%) 76 h + ++ + e- ---- e- e- 0νββ high detection efficiency of ββ: source = detector no intrinsic background [Astropart.Phys. 91 (2017) 15-21] discrimination of signal- from background like events using pulse shape analysis 4

1.4 km of rock 3500 m w.e. GERDA @ LNGS cosmic muon flux reduced by a factor ~ 106 1 μ/m2/h 5

The Germanium Detector Array concept: operate bare HPGe detectors in LAr which serves as coolant & (active) shielding GERDA Phase I (Nov 2011- May 2013) 17.8 kg enriched semi-coaxial + 3.6 kg enriched BEGe exposure 21.6 kg y BI ~ 10-2 cts/(kev kg yr) T1/2 > 2.1 10 yr (90% C.L.) 0ν 25 590m3 pure water muon veto & neutron absorber HPGe detectors PRL 111, 122503 (2013) (Dec 2015 - ) 30 enriched BEGe (= 20.0 kg) + 7 enriched semi-coaxial (= 15.6 kg) LAr instrumentation goal: BI ~ 10-3 cts/(kev kg yr) Eur. Phys. J. C (2013)73:2330 6

Array wire bonding for contacting ~8cm low radioactivity electronics ~8cm new low mass holders with reduced mass and Cu Si 7

Discriminating Signal from Background Events ββ event ν ν local energy deposition (SSE) in single detector 2νββ background event γ energy deposition in multiple locations (MSE) in single detector γ γ or on detector surface ( ) pulse shape discrimination coincident energy deposition in β/ α more than one detector detector anti-coincindence additional energy deposition in LAr γ γ 0νββ LAr veto 8

LAr Instrumentation Hybrid Design 810 wavelength shifting fibers coupled to SiPMs 100cm 60cm 16 photomultiplier tubes (PMTs) 60cm Cu cylinder with wavelength shifting reflector foil 49cm 9

Start of Full Integration of Phase II Array finished in December 2015 all Ge and LAr detector channels working 10

Start of Full Integration of Phase II Array finished in December 2015 all Ge and LAr detector channels working First data release in June 2016 blinded region: Q ± 25 kev quality cuts (phys. acc. > 99.9%) 35 out of 37 detectors used for analysis events in coincidence with muon veto ( phys. acc.~ 99.9 %) 11

enriched Coax enriched BEGe GERDA 16 07 Dec '15 June '16 FWHM [kev] Energy Scale and Resolution calibration data 3.5 physics data 3 2 1.5 150 100 50 0 1 500 counts / (0.1 kev) counts / (1.0 kev) 2.5 104 3 10 102 1460 1480 1500 1520 1540 energy [kev] 1000 1500 2000 2610 2620 energy [kev] 2500 energy [kev] FWHM @ Q : BEGe's: 3.0(2) kev Coax: 4.0(2) kev 12

Performance of the LAr Veto counts / 25 kev 104 10 enriched Coax 5.0 kg yr prior liquid argon (LAr) veto after LAr veto Monte Carlo 2 (T1/2= 1.92 1021 yr) 2νββ 3 GERDA 16 07 2 :bck = 96:4 (1.0-1.3 MeV) 102 10 counts / 25 kev 1 104 500 39 103 Ar 1000 1500 enriched BEGe 5.8 kg yr 2000 2500 3000 3500 4000 4500 K 2 102 5000 energy [kev] 210 Po 10 1 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 energy [kev] 2νββ MC with T1/2 = 1.9 1021 yr from Phase I EPJC 75 (2015) 416 13

Pulse Shape Analysis: A/E for BEGe detector current time profile used to discriminate signal from background events A/E 1 E (A/E 1)/σA/E A α-region Signal region γ-lines 14

A/E Analysis for BEGe's 80% of background events rejected at Q and keep high signal efficiency = 87(2) % A/E 1 E (A/E 1)/σA/E A 2νββ acceptance 85+2-1 % 15

Background Suppression LAr + PSD BEGe, 5.8 kg yr BI BI BI AC, MV +3.8 3 =15.7 3.1 10 AC, MV, LAr +2.2 counts kev kg yr 3 =4.5 1.6 10 AC, MV, LAr, PSD +1.1 counts kev kg yr 3 =0.7 0.5 10 counts kev kg yr 16

Spectrum at Q counts / ( kev kg yr ) counts / ( kev kg yr ) counts / ( kev kg yr ) prior cuts after LAr veto (Phase II) 1 Phase I after all cuts limit (90% C.L.) 23.6 kg yr Q Extended unbinned profile likehood: 10 1 10 2 10 3 1 1950 2000 2050 Phase II enriched Coax 2100 2150 5.0 kg yr energy [kev] flat background in 1930-2190 kev signal = Gaussian with mean at Q and standard deviation E 7 parameters: 6 BI + common T1/2 10 1 10 2 best fit for N = 0 lower limit T1/2 > 5.3 1025 yr 3 10 1 1950 2000 2050 Phase II enriched BEGe 2100 2150 energy [kev] 5.8 kg yr with T1/2 sensitivity 4.0 1025 yr (90 % C.L.) 10 1 10 2 10 3 Frequentist approach after Cowan et al., EPJC 71 (2011) 1554 1950 2000 2050 2100 2150 energy [kev] 17

Current Status of GERDA Pre l since summer 2016 additional (blinded) data BEGe after LAr veto and PSD: +0.6 3 BI =0.6 0.4 10 counts kev kg yr imi Coax +1.1 3 BI =2.2 0.8 10 nar y counts kev kg yr 18

Conclusion GERDA sets new limit on the half-life of 0 decay of 76Ge 0ν 25 T 1/ 2>5.3 10 yr @ 90 C. L. mββ <(150 330)meV best energy resolution: FWHM = 3.0 kev (4.0 kev) BEGe (Coax) at Q flat background in ROI lowest background at Q : 10-3 counts/ (kev kg yr) will stay background-free important ingredients for discovery 19

Beyond GERDA LEGEND (Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay) new collaboration formed in Oct 2016 (=GERDA+Majorana+new groups) Goals: - 1 t enriched Ge - first phase: 200 kg in existing infrastructure @ LNGS - reduce background with respect to GERDA remain background-free best discovery potential Eur.Phys.J.C76 (2016) 176 20

Bonus Slides 21

Duty Cycle 22

Performance of the LAr Veto random coincidences: 2.3% 42 K line suppressed by factor 5-6 42 K 42Ca + γ (1.5 MeV) in Ge + β- ( 2 MeV) in LAr K 40Ar (EC) no energy in LAr counts / 1 kev 40 150 100 42 K 40 K 50 1460 1480 1500 1520 1540 energy [kev] 23

K Background 42 solution: transparent nylon cylinder coated with wave length shifter tested in test cryostat LArGe nylon from BOREXINO 24

Signals of BEGe's final drift paths of holes nearly independent of interaction point high gradient of weighting potential single site events (SSE) have similar pulse shape current signal = q v q: charge, v: velocity current [a.u.] figure taken from JINST 6 P03005, 2011 1 0.8 81000 SSE 81500 82000 time [ns] 81500 82000 time [ns] MSE = superposition of SSE 0.6 0.4 0.2 0 81000 25

PSD with Coaxial HPGe more detail in Eur.Phys.J C73 (2013) 2583 To identify signal like events artificial neural network algorithm TMlpANN from TMVA is used Input variables: times when charge pulse reach 1%, 3%,, 99% of maximum amplitude DEP events of at 1503 kev serve as signal sample FEP events at 1621 kev as multi site event sample 45% of background events rejected at Qbb with a 0 efficiency of 90+5-9 % current signal = q v q: charge, v: velocity 2 efficiency 85 ± 2 % 26

Coax PSD 27

Background Suppression LAr + PSD Coax, 5.0 kg yr BI BI BI AC, MV +4.2 3 =16.5 3.5 10 AC, MV, LAr +3.5 counts kev kg yr 3 =10.4 2.7 10 AC, MV, LAr, PSD +2.1 =3.5 1.5 10 counts kev kg yr 3 counts kev kg yr 28

Background Model Background Model BEGe Prelim befor inary res u e PS D & L lts Ar ve to 29

Background Composition at Q Monte Carlo Simulation of BEGe Background Prelim befor inary res u e PS D & L lts Ar ve to expect flat background in ROI enr Coax enr ~ 1/3 ~ 1/3 ~ 1/3 ~ 1/3 ~ 1/3 ~ 1/3 BI counts/(kev kg yr) 0.014 0.015 214 Bi and 208Tl K LAr 42 BEGe 30

Effective Majorana Neutrino Mass Assuming light Majorana neutrino exchange (T 0 ν 1 1/ 2 2 ) mee observable effective Majorana mass: mee i U 2ei mi Access to absolute neutrino mass scale mass hierarchy Modified figure from Nucl. Part. Phys. Proc., 260:188 193, 2015 31

Phase I + II Data Sets (T NA: Avogadro s constant, m76: molar mass of 76Ge M t: exposure [kg yr], T1/2: half-life of 0 decay, LAr LAr efficiency, PSD PSD efficiency, exposure averaged efficiency incl. active volume, enrichement, FEP ln 2 N A M t ) N 0 ν= ϵ ϵpsd ϵ LAr 0ν m76 T 1/ 2 0 ν 1 1/ 2 data set exposure [kg yr] Phase I gold 17.9 Phase I silver Energy resolution (kev, FWHM) Background index 0.001 cnts/(kev kg yr) 0.57 (3) 4.3 (1) 11 ± 2 1.3 0.57 (3) 4.3 (1) 30 ± 10 Phase I BEGe 2.4 0.66 (2) 2.7 (2) 5+4-3 Phase I extra 1.9 0.58 (4) 4.2 (2) 5+4-2 Phase II coax 5.0 0.53 (4) 4.0 (2) 3+3-1 Phase II BEGe 5.8 0.60 (1) 3.0 (2) 0.7+1.3-0.5 signal eff 32

Results from GERDA Phase I 21.6 kg y exposure blind analysis: events in ROI not available for analysis background index (BI) after pulse shape discrimination counts kev kg yr 10 times better BI than previous experiments BI=1.0 (1) 10 2 Q = 2039 kev number of events in Qββ±2σE after cuts (gray): 2.0 ± 0.3 expected from background 3 observed no signal observed at Qββ profile likelihood: best fit for N0 = 0 limit on the half-life 0ν 25 T 1/ 2 >2.1 10 yr (90% C.L.) claim rejected with 99% probability 0ν GERDA: 90% lower limit (T1/2 ) [Phys. Rev. Lett. 111 (2013) 122503] 0ν Claim: T1/2 =1.19 1025 yr [Phys. Lett. B 586 198(2004)] 33