Title rays. Citation Advanced Materials Research, 409: 5. Issue Date Journal Article. Text version author.

Similar documents
Takayama, Nobuki; Ohara, Katsuyoshi. Issue Date Journal Article. Text version author.

Citation Canadian geotechnical journal, 41(3

Title - Relation between Pre-Processing a

Title in the fish retina during optic ner

Title volcanic deep low-frequency tremors. Citation Geophysical Research Letters, 34(7) Issue Date Journal Article. Text version author

Hideki; Shintani, Yuko; Sanada, Shi

structure of ultrathin Bi films

Citation Zoological Science, 17(1-12): Issue Date Journal Article. Text version publisher.

Title density-functional study. Citation Applied Physics Express, 8(7): Issue Date Journal Article. Text version author

Title 2 thenoyltrifluoroacetone. Kidani, Keiji; Imura, Hisanori. Citation Talanta, 83(2): Issue Date

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

ROSE リポジトリいばらき ( 茨城大学学術情報リポジトリ )

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

ROSE リポジトリいばらき ( 茨城大学学術情報リポジトリ )

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Title combating desertification. Citation Heterocycles, 75(5): Issue Date Journal Article. Text version author

京都 ATLAS meeting 田代. Friday, June 28, 13

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

The unification of gravity and electromagnetism.

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Product Specification

Illustrating SUSY breaking effects on various inflation models

Title. CitationOptical Review, 22(1): Issue Date Doc URL. Rights. Type. File Information.

Title. Citation Island Arc, 14(3): Issue Date Journal Article. Text version publisher.

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

Yutaka Shikano. Visualizing a Quantum State

Method for making high-quality thin sections of native sulfur

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Relation of machine learning and renormalization group in Ising model

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

An Analysis of Stochastic Self-Calibration of TDC Using Two Ring Oscillators

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Analysis of shale gas production performance by SGPE

XENON SHORT ARC LAMPS キセノンショートアークランプ

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

ROSE リポジトリいばらき ( 茨城大学学術情報リポジトリ )

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

日本政府 ( 文部科学省 ) 奨学金留学生申請書

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

galaxy science with GLAO

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Chemical Management Manual. Ver. 1

GRASS 入門 Introduction to GRASS GIS

Development of Advanced Simulation Methods for Solid Earth Simulations

SUSY Model Discrimination at an Early Stage of the LHC

高エネルギーニュートリノ : 理論的な理解 の現状

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Introduction to Multi-hazard Risk-based Early Warning System in Japan

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

SAFETY STANDARD APPROVED METALLIZED POLYPROPYLENE CAPACITOR 海外規格メタライズドポリプロピレンコンデンサ TYPE ECQUA

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

数理統計学から た Thermo-Majorization: 統計モデルの 較と情報スペクトル. National Institute of Informatics Keiji Matsumoto

TitleNew Weakness in the Key-Scheduling

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

THE HOLISTIC LOVE REPORT

SPSS/SAS ANOVA Manual

October 7, Shinichiro Mori, Associate Professor

Digital Torque Meter ADT-C Series OPERATION MANUAL

IAU IAU commission president vice-president 8 9 IAU. 2. IAU Division structure. Commission 31 SKYPE 4.

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

The cause of the east west contraction of Northeast Japan

SNOW/ICE ~ 雪氷災害 ~ LESSON 6

NIE を取り入れた教育実践研究 大学 2 年生を対象とした時事教養 Ⅰ の授業実践を通して. Educational Research based on Newspaper In Education (NIE)

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

Thermal Safety Software (TSS) series

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

ATLAS 実験における荷電ヒッグス粒子の探索

A New Spectrophotometer System for. Surfaces Simultaneously. Author(s) Makino, Toshiro; Wakabayashi, Hiden.

Taking an advantage of innovations in science and technology to develop MHEWS

トンネルの切羽からの肌落ちによる 労働災害の調査分析と防止対策の提案

SML-811x/812x/813x Series

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

2018 年度推薦入学選考 (11 月 15 日実施 ) 英語分野問題 ( 1 ページ 8 ページ )

Transcription:

Title uthor(s) Nondestructive structure test of ca rays Yaguchi, Osamu; Okada, Yoshiyuki; S itation dvanced Materials Research, 409: 5 Issue Date 2012 Type Journal rticle Text version author URL http://hdl.handle.net/2297/30191 Right *KUR に登録されているコンテンツの著作権は, 執筆者, 出版社 ( 学協会 ) などが有します *KUR に登録されているコンテンツの利用については, 著作権法に規定されている私的使用や引用などの範囲内で行ってください * 著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には, 著作権者の許諾を得てください ただし, 著作権者から著作権等管理事業者 ( 学術著作権協会, 日本著作出版権管理システムなど ) に権利委託されているコンテンツの利用手続については, 各著作権等管理事業者に確認してください http://dspace.lib.kanazawa-u.ac.jp/dspac

Nondestructive Structure Test of cam-shaft using both eddy current and X-rays Osamu YGUHI 1,a, Yoshiyuki OKD 2,b, Toshihiko SSKI 3, 1 Riken orp., 13-5,Kudankita 1-chome,chiyoda-ku,Tokyo 102-8202 Japan 2,3 Kanazawa University, Kanazawa, Ishikawa, Japan a osamu.yaguchi@riken.co.jp b okada-y@stu.kanazawa-u.ac.jp c sasakit@kenroku.kanazawa-u.ac.jp Keywords : Eddy urrent, X-ray, Nondestructive Test, hilled Structure, am-shaft bstract. The cam-shaft for the internal-combustion engine needs to be chilled at the foundry stage to rise the cam hardness, but unexpected chilled structures could occur on the sensor plate surface. If chilled structures exist on the sensor plate, a grinding tool may break when grinding sensor plate, or the specified shape may be unable to be produced due to resistance arising from the hyper-hardness of the chilled structures. For this reason, developing an inspection technique and a device for detecting unnecessary chilled structures before grinding the cam-shaft and for determining the rejection and removal of cam-shafts with chilled structures detected was necessary. This article reports on a recently developed nondestructive method using an eddy current test and X-rays to accurately detect chilled structures on a cam-shaft sensor plate. 1. Summary In the manufacturing process of a cam-shaft for the internal-combustion engine that primarily includes casting and machining, the cam tip s structures are chilled locally to increase durability and resistance to abrasion with other areas that are de-chilled in order to raise machinability. When hard chilled structures are in areas other than a cam, they could exert harmful influence on the manufacturing line due to bite damage, etc. However, since the surface of a cam-shaft immediately after casting is covered with oxide scales (black scales), it is difficult to confirm chilled structures from appearance. In our research, we conducted a basic examination to develop an optimum evaluation system for the actual cam-shaft manufacturing line. s a result, we succeeded in developing a system that can detect structures with a nondestructive method, even on a cam-shaft covered with a rough casting surface. Our report follows below. 2. Nondestructive test using eddy current 2.1 Eddy current When a conductor is brought close to a coil running with alternating current, eddy current is inducted inside the conductor due to electromagnetic induction phenomenon. The generating eddy current decreases as it goes deeper inside the conductor. The eddy current density (Jx) at a depth (x) from the surface of a conductor is calculated by formula (1) (3) below. J x 0 exp( x π fµσ ) / 2 [ m ] = J (1)

J 0 : urrent density of conductor surface [/m 2 ] f : Frequency of magnetic field [Hz] x : Depth from the conductor surface [m] µ: onductor permeability [H/m] σ : onductor conductivity [S/m] hilled structure detection can be conducted by detecting the crystal structure difference or the permeability change (1),(2). 2.2 Eddy current sensor The eddy current sensor we used in our research is a through hole type (φ63 mm) as shown in Fig. 1. This type measures the eddy current data by putting a specimen to be measured into the hole. Two sensors are used to inspect the structures in order to detect the permeability difference from the standard specimen. driver coil hole diameter (63[mm]) pick up coil hole Fig.1 Through hole type eddy current sensor 3. Problem for structure distinction and solution We discovered a problem below when inspecting a cam-shaft s sensor plate with an eddy current type nondestructive inspection apparatus. When holding a cam-shaft with holder / as shown in Fig. 2, if the center shaft of holder / is distorted, the holding position moves slightly in the axial direction each time a cam-shaft is set on the inspection apparatus. This results in variations in X(active current) and Y(reactive current) data obtained from eddy current. hole E holder sensor plate cam-shaft holder Fig.2 Example of holding cam-shaft We considered this problem as below and conducted an experiment. With a sensor as shown in Fig.1, the magnetic field intensity (H) in the solenoid coil center is calculated by formula (2) below as shown in Fig. 3. [ m] H = ni / 1+ (2r / l) 2 / (2) n: oiling amount per coil unit length I: urrent running in coil [] r: oil s radius [m] l: oil length [m]

coil l H o r a Fig.3 Magnetic field intensity in solenoid lthough the magnetic field intensity is different from formula (2), the magnetic field intensity pattern of the coil s axial direction is the same on an arbitrary concentric circle of radius a. Therefore, even if a sensor plate is moved in the coil s axial direction at the coil center (O), the intensity of the magnetic line that penetrates a sensor plate does not change. Nevertheless, the obtained eddy current data show changes. This may be because the eddy current received at a pick up coil changes. Speculating this, we conducted the following experiment. Move the cam-shaft to be inspected by approximately 0.5 [mm] to 1 [mm] in the axial direction and obtain eddy current data. Then you can observe the phenomenon of the eddy current vector making a straight-line movement in the θ direction like the locus Q in Fig. 4. Figure 4 illustrates one exciting frequency, but all the 8 waves of 25[Hz],80[Hz],250[Hz],630[Hz],1.6k[Hz],4k[Hz], 10k[Hz],and 25k[Hz] move on a straight-line. (reactive current) Y tolerance zone d d axial direction movement of cam-shaft S1 f(x)u reference cam-shaft f(x)l 0 (active current) Fig.4 X,Y data for axial cam-shaft movement S2 (x1,y1) (x2,y2) inspection cam-shaft K1 f(x) ( y2 y1) = tan 1 ( x2 x1) K2 Q X We discovered the following from this experiment. a. When the same metal specimen is moved in a through hole type eddy current sensor in the coil s axial direction, the locus of X and Y data becomes a straight line, meaning that the eddy current s phase does not change, but the signal level received changes. b. If there is a difference in the metal structure, the structure s permeability changes. Then the phase of the eddy current received also changes, and the locus of the eddy current data becomes parallel to the inclination in a., but becomes a straight line in a different area. ased on these results, we see that the change in the obtained eddy current data when a sensor plate is moved in the coil s axial direction at the coil center (O) is because the intensity received at the pick up coil changes to the eddy current that occurred inside the sensor plate. In Fig.4, even if the eddy current vector moves in the Q direction, this does not necessarily mean that the sensor plate s permeability changed. lso, even if the sensor plate s position is not changed, the eddy current vector moves in Φdirection if there is a difference in the sensor plate s structure. (The bigger the permeability difference is, the bigger the (vector) movement in the Φdirection) The inspection method developed this time sets the tolerance zone with the 2 parallel lines (f(x)u, andf(x)l) as shown in Fig.4.

4. Specimens and structure judgment We prepared 3 different specimens at the chilled area rates of 0.5%,5%,and 12% as shown in Fig.5 (hilled area rates of 0.5% or under are non-defective items) of a cam-shaft including chilled structures on the sensor plate. We examined the structure of 10 sample cam-shafts for each specimen with the nondestructive inspection apparatus for the cam-shaft that we made based on the structure inspection method we have introduced so far. s a result, all the specimens with a chilled area rate of 0.5% passed, and all the specimens with 5% and 12% failed, which is correct. 0.5% 5% 12% 10mm Fig.5 Sensor plate specimens 5. X-ray diffraction experiment In order to compare with other evaluation method, X-ray diffraction method was investigated. Fig.6 shows specimens used for X-ray experiment. in the experiment, Fig.7 shows Debye ring obtained from the cam specimen. rkα radiation and 211-diffraction were used. Debye rings were measured at different locations using an image plate. It is seen that each difference is not clearly understood in the range to have compared the photograph. Fig.8 shows diffraction profiles obtained from Each Debye ring in Fig.7. t point- on the cam specimen, the diffraction profile shows a larger FWHM (Full Width at Half Maximum) as well as higher diffraction intensity comparing to the other points. However, the judgment of chilled structure is difficult because the difference is indistinct. ecause X-ray diffraction is caused on the surface of the material, there is a possibility of receiving the influence of the surface treatment of the material. D (a) cam (b) sensor plate Fig.6 Specimens used for X-ray diffraction experiment and locations irradiated by X-rays. (a) point- (b) point- (c) point- (d) point-d Fig.7 Debye rings obtained from the cam specimen. (rkα radiation, 211-diffraction)

Intensity, arbit. unit 18000 16000 14000 12000 10000 8000 D 6000 200 250 300 350 Distance from center of ring, pixel Intensity, arbit. unit 14000 12000 10000 8000 6000 4000 200 250 300 350 Distance from center of ring, pixel (a) cam specimen (b) sensor plate specimen Fig.8 Diffraction profiles obtained from the cam specimen and the sensor plate specimen. ONLUSIONS 1. When we obtained the eddy current data, we moved the inspection item in the coil s axial direction and calculated the movement angles (θ) of X and Y data. We did not consider the eddy current data displacement in the θ direction as a change in permeability, and we were able to develop an inspection apparatus that accurately judges. The inspection apparatus that we developed has the following advantages: ) specimen (cam-shaft) with a rough casting surface after casting can be inspected. ) The detection of structure differences does not deteriorate even if the center of the inspection apparatus s holder axis is incorrect for reasons such as the structure having been incorrectly manufactured or having changed after long use. This is extremely useful as a technology for detecting chilled structures on a sensor plate. 2. The volume of self-induction voltage (υ) that occurs on a pick up coil is in proportion to the change rate of the flux (Φ) inside the coil. υ = k dφ / dt ( k : onstant t : Time) Therefore, the lower the exciting frequency is, the smaller υ becomes. lso, if the drive coil s inductance (L) becomes large according to the inspection item s material and size, the inspection item is not excited fully by a high frequency, and υ becomes small. We expect an ideal eddy current type nondestructive inspection apparatus will be developed. The drive coil current will automatically adapt at each frequency so that the eddy current detection sensitivity and resolution would be almost the same at any frequency. REFERENES [1] T. be, T. Uchimoto, T. Takagi, and S. Tada: Material haracterization of ast Irons by Eddy urrent Testing, J. JFS, Vol.75, No.10 (2003) [2] M. Kurosawa, T. Uchimoto, T. Takagi, T. Sato, H. Kage, T. Noguchi : Detection of ementite in Spheroidal Graphite ast Irons Using Eddy urrent Method, J.JFS, Vol.77, No.12 (2005) [3] rack Test using eddy current : The Japanese Society for Non-destructive Inspection [4] Eddy visor S Handbook : ibg Prüfcomputer GmbH