TECHNICAL NOTE. Performance of Grooved Bituminous Runway Pavement

Similar documents
APPENDIX B DISTRESSES

Manufacturer s Perspective- Runway Friction and Aircraft Performance

Deicing (Winter Operations) on Porous and Permeable Pavements. Laura Fay October 27, 2016

COARSE VERSUS FINE-GRADED SUPERPAVE MIXTURES: COMPARATIVE EVALUATION OF RESISTANCE TO RUTTING

Evaluation of Rutting Depth in Flexible Pavements by Using Finite Element Analysis and Local Empirical Model

Rheological Properties and Fatigue Resistance of Crumb Rubber Modified Bitumen

MEASURING THE EFFECT OF DE-ICING SOLUTIONS ON THE ADHESION OF ASPHALT MIXTURES

Flexible Pavement Design

Rheology considerations for recycled and recovered binder

Accelerated Loading Evaluation of Base & Sub-base Layers

Of course the importance of these three problematics is affected by the local environmental conditions.

2008 SEAUPG CONFERENCE-BIRMINGHAM, ALABAMA

INTRODUCTION TO PAVEMENT STRUCTURES

Mechanistic-Empirical Pavement Design Guide: A User s Perspective. Brian D. Prowell, Ph.D., P.E.

Effect of Transient Dynamic Loading on Flexible Pavement Response

Phenomenological models for binder rutting and fatigue. University of Wisconsin Research Team

CHAPTER 5 RANDOM ROAD ANALYSIS

Mechanistic Pavement Design

Aggregates. AAPA training

Analysis of Non-Linear Dynamic Behaviours in Asphalt Concrete Pavements Under Temperature Variations

Submitted for Presentation at the 2006 TRB Annual Meeting of the Transportation Research Board

Pavement Distress Categories

Pavement Design Where are We? By Dr. Mofreh F. Saleh

Impact of coarse aggregate type and angularity on permanent deformation of asphalt concrete

2002 Design Guide Preparing for Implementation

TECHNICAL NOTE PREDICTION OF PAVEMENT SURFACE SKID RESISTANCE AND THE EFFECT OF SMALLER CHIP SIZE

Why Dynamic Analysis Is Needed?

Evaluating Hydroplaning Potential of Rutted Highway Pavements

Verification of the dissipated energy based fatigue model using field data

EFFECT OF AGGREGATE SHAPE FACTORS ON THE PERFORMANCE OF ASPHALT MIXES

EVALUATION OF FATIGUE LIFE OF ASPHALT MIXTURES THROUGH THE DISSIPATED ENERGY APPROACH

Impact of Water on the Structural Performance of Pavements

Effect of Moisture on Full Scale Pavement Distress

Preventing Runway Excursions. Landing on wet / Contaminated Runways

Preventing Runway Excursions. Landing on wet / Contaminated Runways

NCHRP. Project No. NCHRP 9-44 A. Validating an Endurance Limit for Hot-Mix Asphalt (HMA) Pavements: Laboratory Experiment and Algorithm Development

ACKNOWLEDGMENT OF SPONSORSHIP

Laboratory Study for Comparing Rutting Performance of Limestone and Basalt Superpave Asphalt Mixtures

Asphalt Mix Designer. Module 2 Physical Properties of Aggregate. Specification Year: July Release 4, July

Gravel / Surface Treated Roads

Dynamic Resilient Modulus and the Fatigue Properties of Superpave HMA Mixes used in the Base Layer of Kansas Flexible Pavements

RUNWAY FRICTION CHARACTERISTICS EVALUATION

Performance Characteristics of Asphalt Mixtures Incorporating Treated Ground Tire Rubber Added During the Mixing Process

AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES. Evaluating the Impact of Aggregate Gradations on Permanent Deformation of SMA Mixture

DYNAMIC MODULUS MASTER CURVE AND CHARACTERIZATION OF SUPERPAVE HMA CONTAINING VARIOUS POLYMER TYPES

Macroscopic and Microscopic Evaluation of Surface Friction of Airport Pavements

- Take a notes packet from trapezoid table. - Start vocab on notes packet

Effect of tire type on strains occurring in asphalt concrete layers

MAINTENANCE AND REHABILITATION OF LOW COST SURFACE DRESSING FOR LOW VOLUME ROADS EXPERIMENTAL ROAD SITES

Asphalt Mix Performance Testing on Field Project on MTO Hwy 10

Improvement of Cracking Resistance for the Semi-Rigid Base Layer Reinforced by Geogrid

Evaluation of Aggregate Structure Stability Using the Superpave Gyratory Compactor

Pavement Preservation Strategy Selection

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility

Superpave Implementation Phase II: Comparison of Performance-Related Test Results

USE OF BBR TEST DATA TO ENHANCE THE ACCURACY OF G* -BASED WITCZAK MODEL PREDICTIONS

MODELING OF THE HYDROPLANING PHENOMENON. Ong G P and Fwa T F Department of Civil Engineering National University of Singapore INTRODUCTION

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance

United States 3 The Ultran Group, Inc. Boalsburg, Pennsylvania, Unites States

APPENDIX D GEOTECHNICAL ENGINEERING RECOMMENDATIONS

Analysis of pavement structural performance for future climate

FULL-DEPTH HMA PAVEMENT DESIGN

AIRPORT PAVEMENT MAINTENANCE AND REHABILITATION AT ARIZONA AIRPORTS WITH ASPHALT-RUBBER David A. Gilbertson, P.E. and W. R. Meier, Jr., Ph.D., P.E.

DISPLACEMENT RATE AND TEMPERATURE EFFECT ON ASPHALT CONCRETE CRACKING POTENTIAL ASM TAMIM U. KHAN THESIS

Effect of Mixture Design on Densification

FACTORS AFFECTING RESILIENT MODULUS

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

Research Article SGC Tests for Influence of Material Composition on Compaction Characteristic of Asphalt Mixtures

APPENDIX A PROGRAM FLOW CHARTS

Climate changes in Norway: Factors affecting pavement performance

TECHNICAL PAPER INVESTIGATION INTO THE VALIDATION OF THE SHELL FATIGUE TRANSFER FUNCTION

FAA Research on Runway Intersection Grading Criteria

Advances in performance evaluation of asphalt binders

The Superpave System Filling the gaps.

What is on the Horizon in HMA. John D AngeloD Federal Highway Administration

FROST HEAVE. GROUND FREEZING and FROST HEAVE

NOTTINGHAM DESIGN METHOD

Study on How to Determine Repair Thickness of Damaged Layers for Porous Asphalt

Role of Binders in Pavement Performance

Flexible Pavement Analysis Considering Temperature Profile and Anisotropy Behavior in Hot Mix Ashalt Layer

Wearing Down Landforms

Evaluating Structural Performance of Base/Subbase Materials at the Louisiana Accelerated Pavement Research Facility

GeoShanghai 2010 International Conference Paving Materials and Pavement Analysis

Stress Rotations Due to Moving Wheel Loads and Their Effects on Pavement Materials Characterization

Status Update: NCHRP Project 9-48

Evaluation of the dynamic modulus of asphalt mixture incorporating reclaimed asphalt pavement

Relative Performance of CC6 Concrete Pavement Test Items at the FAA National Airport Pavement Test Facility

Adhesion and Cohesion of Asphalt in Pavement

Ch. 10: Fundamental of contact between solids

A FIELD EXPERIMENT ON THE ACCURACY OF VISUAL ASSESSMENT OF WINTER ROAD CONDITIONS

Creep Compliance Analysis Technique for the Flattened Indirect Tension Test of Asphalt Concrete

Performance-Based Mix Design

Development of Laboratory to Field Shift Factors for Hot-Mix Asphalt Resilient Modulus. Samer W. Katicha. Masters Of Science.

ALACPA-ICAO Seminar on PMS. Lima Peru, November 2003

LTPP InfoPave TM Extracting Information out of LTPP Data

Dynamic Modulus of Asphalt Mixtures for Development of

New Test Method for Measuring Friction Characteristics Between Asphalt Mixtures and Steel

Strain Response of Hot-Mix Asphalt Overlays for Bottom-Up Reflective Cracking

Comparison of Ontario Pavement Designs Using the AASHTO 1993 Empirical Method and the Mechanistic-Empirical Pavement Design Guide Method

Transcription:

TECHNICAL NOTE TECH NOTE NO: 28 TITLE: Performance of Grooved Bituminous Runway Pavement AUTHORS: Alex K. Apeagyei, Imad L. Al-Qadi, Hasan Ozur, and William G. Buttlar CONTACT: University of Illinois, Dept of Civil & Environmental Engineering 1212 NCEL, MC-250, Urbana, IL 61801, PH (217) 333-5966, Email: buttlar@uiuc.edu and alqadi@uiuc.edu DATE/REV: 04/06/07 1. Introduction Grooving of flexible (and rigid) pavements is a technique performed to reduce hydroplaning and to improve friction on all runways that serve turbojet aircrafts. Despite their widespread application, grooves in hot-mix asphalt (HMA) runways are prone to several distresses that limit their longevity at the desired level of serviceability. This technical note presents a synthesis of the available literature regarding the performance of grooved HMA runway pavements. It focuses on runway grooving patterns, common groove distresses, runway critical locations of groove distresses, and groove collapse. In addition, preliminary tests on groove collapse evaluation in the laboratory are discussed. Particular attention is given to the effects of aggregate gradation, maximum aggregate size, and binder type on groove collapse. 2. Runway Groove Patterns Pavement grooving is used on airfields to control hydroplaning and to ensure adequate friction; especially under wet pavement conditions. Common pavement groove orientations are transverse, longitudinal and angled. Transverse grooving is more common on airfields than on highways. Longitudinal grooves are usually applied to 1

reduce noise and to improve directional control of vehicles. Various groove profiles have been used including rectangular, trapezoidal and rounded. Guidelines and standards for construction and maintenance of runway grooves are available through FAA (1). These guidelines were developed based on the results of extensive grooving studies. For HMA, the standard groove dimensions are ¼-in-deep, ¼-in-wide and 1½-in center-to-center spacing, as shown in Figures 1 and 2. The first HMA runway grooving at a commercial airport was applied at Washington National Airport. A 1 / 8 -in-deep, 1 / 8 -in-wide and 1-in center-to-center grooving pattern was used (10). ¼ 1-½ ¼ Figure 1 Schematic of standard HMA runway groove pattern. Figure 2 Five-year old saw-cut grooves at Volk Field Air National Guard Base in Wisconsin; the HMA runway regularly supports heavy cargo planes (4) 3. Groove Distress Critical Locations For the purpose of evaluating groove deterioration, the runway can be segmented into four areas: the threshold; touchdown; braking; and turning (11). The threshold area is where final engine runs are performed prior to takeoff. The touchdown areas are used to 2

transition from flight to landing. Braking and turning areas include sections near taxiway exits and/or intersections. Figure 3 is a schematic of the groove distress critical locations. Grooves in touchdown and braking areas are the most seriously damaged. The distresses include wear, groove closure, and rubber deposits. Migration of grooves generally occurs in threshold areas (Figure 4). In a survey by Melone (11), it was reported that grooves in turning areas had experienced the least damage, where limited wear and closure were observed. The type/level of groove deterioration was found to be dependent upon airport location. Migration and closing were found to be more common in warm climates than in cold ones. This notion was supported by the results of the survey conducted in 1974. The migration and groove closure occurred in all the critical areas on Runway 9L/27R at Ft Lauderdale-Hollywood International airport, while none were reported on O Hare s Runway 14L/32R. On the other hand, cracking and wear were observed on all critical areas at O Hare, while almost none were observed at Ft Lauderdale-Hollywood. Both surveys were conducted in the same year. 3

Legend Threshold Area Touchdown Area Braking Area Turning Area Figure 3 Runway groove distress critical locations 4

4. Common Groove Distresses Some of the more common distresses that can be associated with HMA runway pavements are shown in Table 1. These distresses were identified from a runway groove survey (11). The surveyed runways were selected from airports located in both warm and cold climates and included both low and heavily trafficked runways. Some of the reported distresses, such as wearing, cracking, spalling, and erosion, are intrinsic to HMA pavements and could occur in both grooved and ungrooved surfaces. However, the most serious distresses associated with groove deterioration were wear, groove closure, and rubber deposits. Two of these three distresses, groove wear and groove closure, could be attributed directly to the influence of asphalt binder and the aggregate characteristics. Groove wear and closure, and migration all result in groove collapse and may be related to plastic flow of the HMA. Table 1 Common distresses associated with grooved HMA runways (11) Distress Wear Groove Closure Rubber Deposits Cracks Definition Groove depth measuring 1/8" or less compared with standard depth of 1/4" Groove width measuring 3/16" or less compared with standard width of 1/4" Rubber in grooves and on runway Reflection cracks and cold seam cracks propagated along grooves Migration Flowing of HMA resulting in a wavy groove pattern (Figure 4) Deep/Shallow Cutting Rounding Spalling Chipping Erosion Adjacent grooves of different depths caused by defective cutting methods Wearing away of sharp groove edges Disintegration, breaking up of HMA surface Breaking away of aggregate and/or filler material in sharp edges of grooves Washing out of fine filler or binder material leaving exposed aggregate 5

Figure 4 Wavy groove patterns caused by migration (11) 5. Groove Collapse Wear, closure, and migration can lead to groove collapse. Allen and Quillen (3) evaluated the effects of aircraft loading and climatic conditions on the performance of grooved HMA runways. Tests were conducted on an 8750-ft-long runway at NASA s Wallops research facility. The grooves were ¼-in-deep by ¼-in-wide and spaced at 1-in centers. Two HMA mixtures identified as small aggregate HMA (3/8 in nominal maximum aggregate size); and large aggregate mixtures (3/4 in nominal maximum) were used. Repeated aircraft loadings (McDonnell Douglas F-4D and Convair 990) were applied on the grooved pavements. The study reported unsatisfactory performance of the transverse grooves; especially in areas where the Convair 990 aircraft made 180º turns. The study identified the following problems with HMA grooves: i) grooves were destroyed during 180º turns, as shown in Figure 5; and ii) in the large aggregate HMA sections, the ½ and ¾ in aggregates tended to break loose from the grooves and pose foreign object damage FOD danger. The study recommended that grooving should be performed only in HMA with aggregates less than 3 / 8 in. 6

Figure 5 Damaged grooves by Convair 990 during 180 º turns at Wallops Facility (3) Grooved pavements were also evaluated at five airfields (Miami, Cleveland, New York JFK, Salt Lake City, and Las Vegas airports) that represent various climatic regions. Different groove patterns (width, depth, and pitch) were used (10). The grooves were monitored over four seasons. Grooved HMA sections in colder climates at New York JFK and Washington National performed better than the sections in the warmer regions. The results indicated that HMA grooved sections did not perform satisfactorily in the warmer locations (e.g. Las Vegas, Salt Lake City, and Miami). The high pavement temperature along with aircraft loading resulted in plastic flow and displacement of aggregates in the wheel tracks. The following observations were made based on the Salt Lake City, Miami, and Las Vegas test results: 1) 1 / 4 in deep grooves were structurally inappropriate when compared to the 1 / 8 in deep grooves; 2) grooves spaced 2 in apart, 3 / 8 in wide, and 1 / 8 in deep had the least deformation; and 3) under high ambient temperatures, aggregate size appears to affect the longevity of HMA grooves. Emery investigated the collapse of HMA grooves on Australian runways (5, 6). He suggested that slow moving and heavy aircrafts were responsible for most of the groove closure. Groove collapse was commonly observed in taxiway-runway intersections. The following observations were also made: 1) groove closure typically occurs within 1-3 years of HMA placement and is eventually mitigated with asphalt agehardening; 2) groove closure is related to asphalt binder viscosity (or stiffness), which could be the critical parameter, and; 3) groove closure is more severe in warmer weather. 7

The importance of asphalt binder characteristics on groove collapse was also reported by Mosher (12). This finding was based on measurements of seven sections in five climatic regions. 6. Mechanism of Groove Collapse One mechanism of groove collapse involves plastic flow, which is similar to the mechanism of rutting in ungrooved HMA surfaces. Emery (5, 6) suggested that the mechanism of groove closure involved viscous flow. Microscopic analysis of HMA that had flowed into grooves indicated that the binder still covered the aggregates. This suggested a cohesive (or stiffness) deficiency rather than an adhesive failure. Based on this mechanism of failure, it was suggested that groove closure should be related to binder characteristics, which are function of temperature and time loading as well as age. Another type of grove collapse involves groove edge breakage (5, 6). Groove edge breakage is thought to be caused by horizontal stresses induced by aircraft tires. It was reported that horizontal stresses up to 72 psi and up to 40 kpa could be induced in the transverse and longitudinal directions, respectively, by a B747 aircraft. Repeated application of this stress level on the unsupported groove edges could lead to edge failure. Examination of broken groove edges indicated that the aggregates were still covered with binder, suggesting a cohesive failure. Hence, groove edge breakage is dependent on asphalt binder viscosity/stiffness. However, the mechanism of groove edge breakage may be more critical under cold weather conditions than under warm weather conditions. When subject to cold temperatures, the fracture resistance of asphalt binder is decreased (mixture becomes more brittle). In addition, other field conditions are believed to contribute to edge breakage: age-hardening, freeze-thaw cycling, moisture effects, de-icing chemicals, and snow plow damage. Laboratory Tests for HMA Groove Collapse Evaluation Since groove collapsing in HMA pavement is, in part, similar to rutting, laboratory test methods used to evaluate rutting development in HMA could be considered to investigate 8

groove collapse. The standard FAA specifications for evaluating groove collapse are based on the Marshall method (15). With FAA s adoption of SuperPave TM, new mechanistic-based tests methods become readily available for rutting (and possibly groove collapse) evaluation (7). Of the suggested evaluation methods the following two are the most promising: The number of gyrations to maximum shear stress during the gyratory compaction, parameter N-SR max (3); the rut-depth versus number of loading cycles from the Asphalt Pavement Analyzer (APA) (9, 13). In addition, full scale accelerated testing can be used to evaluate the performance of grooves (14). REFERENCES 1. AC 150/5320-12C (1997). Measurement, Construction, and Maintenance of Skid-resistant Airport Pavement Surfaces. Federal Aviation Administration. 2. Allen, C. R.; and Quillen, J. W. (1969). Problem Areas Associated with the Construction and Operation of the Landing Research Runway at NASA Wallops Station. Pavement Grooving and Traction Studies, NASA SP-5073, Paper No. 8. 3. Anderson, M.; (2002). Relationship of SPERPAVE Gyratory Compaction Properties to HMA Rutting Behavior. NCHRP # 478. 4. Duval, J.; and Buncher, M. (2004). Superpave for Airfields. Presented for the 2004 FAA Worldwide Airport Technology Transfer Conference, Atlantic City, NJ. 5. Emery, S. J. (2005). Bituminous Surfacing for Pavements on Australian Airports. 24 th Australia Airports Association Convention, Hobart 6. Emery, S. J. (2005). Asphalt on Australian Airports. Australia Asphalt Paving Association Pavement Industry Conference, Surfers Paradise, Queensland. 7. Engineering Brief No. 59A (2006). Item P-401 Plant Mix Bituminous Pavements (Superpave). 8. FAA (1969). Environmental Effects on Airport Pavement Groove Patterns. Engineering Center. Report - Federal Aviation Administration, Report No. FAA-RD-69-37. 9. Kandhal, P.; and Cooley, Jr. (2003). Accelerated Laboratory Rutting Tets: Evaluation of the Pavement Analyzer. NCHRP # 508. 9

10. McGuire, R.C.; (1969). Report on Grooved Runway Experience at Washington National Airport. Pavement Grooving and Traction Studies, NASA SP-5073, Paper No. 19. 11. Melone, R. (1979). Surveys of grooves in 19 bituminous runways. final report /, Naval Air Engineering Center. Report - Federal Aviation Administration, Systems Research and Development Service ; FAA-RD-79-28 12. Mosher, L.G. (1969). Results from studies of Highway Grooving and Texturing of State Highway by several state Highway Departments. Pavement Grooving and Traction Studies, NASA SP-5073, Paper No. 27. 13. Pelland, J.R.; Gould, S.J.; and Mallick, B.R. (2003). Selecting a Rut Resistant Hot Mix Asphalt for Boston-Logan International Airport. Airfield Pavements: Challenges and New Technologies, Airfield Pavement Specialty Conference, Las Vegas, Nevada. 14. Shilling, B.; (1969). R.A.E. Aircraft Tests on Grooved, Open Graded and Asphalt Runways in Great Britain. Pavement Grooving and Traction Studies, NASA SP-5073, Paper No. 4. 15. Standard Test Method for Resistance to Plastic Flow of Bituminous Mixtures using the Marshall Apparatus. 10