Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology

Similar documents
Surface Plasmon-polaritons on thin metal films

Lecture 10: Surface Plasmon Excitation. 5 nm

Surface Plasmon-polaritons on thin metal films - IMI (insulator-metal-insulator) structure -

Geometries and materials for subwavelength surface plasmon modes

Introduction. Chapter Optics at the Nanoscale

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Surface plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides

sgsp agsp W=20nm W=50nm Re(n eff (e) } Re{E z Im{E x Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides.

The Dielectric Function of a Metal ( Jellium )

Plasmonics. The long wavelength of light ( μm) creates a problem for extending optoelectronics into the nanometer regime.

Localized surface plasmons (Particle plasmons)

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Dr. Tao Li

7. Localized surface plasmons (Particle plasmons)

Surface plasmon modes of finite, planar, metal-insulator-metal plasmonic waveguides

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Optical cavity modes in gold shell particles

Light trapping in thin-film solar cells: the role of guided modes

Superconductivity Induced Transparency

II Theory Of Surface Plasmon Resonance (SPR)

OPTICAL PROPERTIES of Nanomaterials

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Optical Properties of Solid from DFT

Magnetoplasmonics: fundamentals and applications

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Plasmonic nanoguides and circuits

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Nanophysics: Main trends

Plasmonic fractals: ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

Spring 2009 EE 710: Nanoscience and Engineering

Nanomaterials and their Optical Applications

Surface Plasmon Resonance in Metallic Nanoparticles and Nanostructures

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Q. Shen 1,2) and T. Toyoda 1,2)

CHAPTER 9 ELECTROMAGNETIC WAVES

Nanophotonics: solar and thermal applications

Model for quantum efficiency of guided mode

Chapter 2 Surface Plasmon Resonance

Broadband Absorption in the Cavity Resonators with Changed Order

Light Interaction with Small Structures

Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit

The observation of super-long range surface plasmon polaritons modes and its application as sensory devices

ECE280: Nano-Plasmonics and Its Applications. Week8

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Nonlinear Electrodynamics and Optics of Graphene

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell

PHYSICS nd TERM Outline Notes (continued)

Metamaterials & Plasmonics

Design Considerations for Plasmonic Photovoltaics

Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Supplementary Figure 1 Reflection and transmission measurement. Supplementary Figure 2 Wavelength dependence of χ

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics

Broadband Plasmonic Couplers for Light Trapping and Waveguiding

The physics of the perfect lens

Surface plasmon polariton propagation around bends at a metal-dielectric interface

Sub-wavelength electromagnetic structures

Physics of Semiconductors (Problems for report)

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

Solar Cell Materials and Device Characterization

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

transmission reflection absorption

How much can guided modes enhance absorption in thin solar cells?

A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Ryan Huschka LANP Seminar February 19, 2008

Emission Spectra of the typical DH laser

Nano Optics Based on Coupled Metal Nanoparticles

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

PLASMONIC LIGHT TRAPPING FOR THIN FILM A-SI:H SOLAR CELLS

Supplementary Information Supplementary Figures

Plasmonic Metasurfaces

Quantum Information Processing with Electrons?

Optical Properties of Lattice Vibrations

Long-Wavelength Optical Properties of a Plasmonic Crystal

Review of Optical Properties of Materials

Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface

Strong Absorption in a 2D Materials-based Spiral Nanocavity

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018

Terahertz Surface Plasmon Polariton-like Surface Waves for Sensing Applications

Chapter 3 Properties of Nanostructures

The Study of Cavitation Bubble- Surface Plasmon Resonance Interaction For LENR and Biochemical processes

2.57/2.570 Midterm Exam No. 1 April 4, :00 am -12:30 pm

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Chapter 5. Semiconductor Laser

Normal modes are eigenfunctions of T

Supplementary Materials

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

ABSTRACT. MALHOTRA, BHARAT. Plasmonic Enhancement of Silicon Solar Cells with Metal Nanoparticles. (Under the direction of Dr. John F. Muth.

Fundamentals of fiber waveguide modes

Guided Acoustic Wave Brillouin Scattering (GAWBS) in Photonic Crystal Fibers (PCFs)

Plasmons, Surface Plasmons and Plasmonics

Transcription:

Plasmonic Photovoltaics Harry A. Atwater California Institute of Technology Surface plasmon polaritons and localized surface plasmons Plasmon propagation and absorption at metal-semiconductor interfaces Coupling of sunlight to surface plasmons Coherent sunlight!

Plasmonic Photovoltaics Team: Harry Atwater Albert Polman Mark Brongersma Domenico Pacifici Kylie Catchpole Luke Sweatlock Ewold Verhagen Vivian Ferry

Lycurgus Cup, Roman, 4 th Century AD La Farge s Opalescent Window 19 th Century

Plasmons at planar metal surfaces and interfaces surface plasmons are longitudinal charge density fluctuations on the surface of a conductor Can form an optical signal with these spatial frequencies on the Ag surface (Light line) dielectric metal see also: Scientific American April 2007 Surface Plasmon dispersion relation for Ag/SiO 2 SPP dispersion relation: k x ω = c ε1ε 2 ε + ε 1 2

dielectric metal Surface Plasmon Polariton (SPP) dielectric dielectric metal metal dielectric Asymmetric Coupled Film SPP dielectric Symmetric Coupled Film SPP

Thin Metal Film SPP Waveguides Insulator + - + - - + + - + - - + + - + - - + + - + - - + + - + - -+ Metal + + + - - - + + + - - - + + + Decreasing Thickness, L+ Insulator Geometry: Planar structures support coupled and decoupled SPP modes, depending upon transverse dimensions Field: Depending on charge symmetry, the E-field can be either symmetric or antisymmetric Spatial Decay: Long-ranging SPPs can extend up to 20um in the dielectric, potentially limiting their mode confinement in the absorber

Plasmons in thin metal films dielectric metal dielectric Symmetric Coupled Film SPP dielectric metal dielectric Asymmetric Coupled Film SPP

Metal-Insulator-Metal Structures SPP field confinement in unbounded metal/dielectric structure MIM schematic: SPP analog of dielectric slot waveguides Metal + - -+ - + -+- + - + - -+ - + -+- + - + - -+ -+ Insulator + + + - - - + + + - - - + + + Metal L+: L-: k z1d ε1 k z2 + ε 2k z1 tanh( ) = 2i k z1d ε1 k z2 + ε 2k z1 coth( ) = 2i 0 0

MIM Plasmon Slot Waveguide Modes Antisymmetric Symmetric Dionne, et al., Phys. Rev. B (2006)

MIM Plasmon Slot Waveguide Propagation Symmetric Modes Propagation Antisymmetric Modes Propagation Skin Depth Skin Depth Symmetric Mode: Thinner films support evanescent modes at longer wavelengths, while thicker films (d>100nm) support propagating modes over an increasing bandwidth Asymmetric Mode: Propagation increases to >30μm with increasing thickness, with fields localized to within 20nm of the structure Zia et.al, JOSA B, (2005); Dionne, et al., MRS Bulletin May (2005)

Omnidirectional Surface Plasmon Absorption in MIM Structures MIM SPP analog of dielectric slot waveguides Metal + - -+ - + -+- + - + - -+ - + -+- + - + - -+ -+ Insulator + + + - - - + + + - - - + + + Metal L+: L-: k z1d ε1 k z2 + ε 2k z1 tanh( ) = 2i k z1d ε1 k z2 + ε 2k z1 coth( ) = 2i 0 0

Materials Selection 0.8 Ag ( 41 nm) in solution 20 Au ( 30 nm) in solution extinction coefficient (a.u.) 0.6 0.4 0.2 extinction coefficient (a.u.) 15 10 5 0.0 200 300 400 500 600 700 800 0 200 300 400 500 600 700 800 wavelength (nm) wavelength (nm) λ res =410 nm τ relax 10 fs λ res =524 nm τ relax 4 fs silver: strong resonance but environmentally sensitive gold: interband absorption but environmentally robust

Resonances in Small Metal Particles Absorption efficiency for a small metal particle: ε + iε ε ε ε Qabs = 4xIm = 12x ε ε ε ε ε ε 1 2 m m 2 2 2 1+ i 2 + 2 m ( 1+ 2 m ) + 2 resonant enhancement at the plasmon frequency w p where ε = ε 1 2 m Excitation of electric dipole mode Resonance of polarizability (mode of uniform polarization) Absorption efficiency at plasmon frequency: Want this resonance to occur in the visible and small damping: Noble metals Au or Ag are the metals of choice! Q abs ( ω ) (wf p ) 12xε = m ε 2 ((w ωf p )

Carrier Collection vs. Diffusion Length L L d Optically Thick, but Collection-Limited L d << L 1/α<< L Collection across base, but Optically Thin L d >> L 1/α>> L

Surface Plasmon Excitation in Thin Films Surface plasmon polaritons (SPPs): 1. guided EM waves at a metal dielectric interface 2. high field confinement at the interface. k i k SPP dielectric + + + - - - + + + - - - + + + - - - metal 6 5 Energy (ev) 4 3 2 1 Δk light cone SPP 0 0.00 0.01 0.02 0.03 0.04 0.05 k i Δk=G=2π/p p k SPP k ' x (nm-1 )

Plasmonic Solar Cells Incident Light SPP Low f Contact QW Dot Active Layer Ag SPP Guiding Layer Ag SPP Guiding Layer QW Active Region n-type QW Cladding p-type QW Cladding p+ contact Incident Light p contact Ag nanoparticle plasmon resonant scattering layer n contact semiconductor absorber p-region n-region Glass Glass

Intensity decay depth L z,d =1/(2k z,d ) Lossy SP waves Si/Ag GaAs/Ag Si/Al GaAs/Al Si Ag z E 2 λ=785 nm Most energy is in a < 50 nm thick layer L z,d

Efficiency : P abs,semiconductor /P abs,total Ewold Verhagen Si/Ag GaAs/Ag Si/Al GaAs/Al η = d d 2 2 2 dz Im[ ε ] E( z) + dz Im[ ε ] E( z) d dz Im[ ε ] E( z) d m m To do: integrate efficiency over solar spectrum

Surface Plasmon Enhanced Absorption in Ultrathin Layers of CdSe Quantum Dots I 0 Domenico Pacifici thick Ag film CdSe quantum dots I T (P,λ)

Plasmonic Modulator Transmission @ 514.5nm Without CdSe QDs With CdSe QDs Normalized Transmission 2.0 1.5 1.0 0.5 0.0 1.5 1.0 0.5 w/out CdSe QDs n surf =1.08 w/ CdSe QDs λ 0 =514.5nm, 0.57 W/cm 2 n surf =1.14 L=25μm L=1.2μm 0.0 0 2000 4000 6000 Slit-Groove Distance (nm) Plasmon Extinction via Excitonic Absorption above Quantum Dot Optical Gap

SPP-Induced Quantum Dot Excitonic Absorption @ 514.5nm 15 2 σ = 3.5 10 cm -1 ρ 3 10 18 cm -3 α = σ ρ 10 4 cm L 1 = α 10 4 cm = 1 μ m CdSe QD Layer 20 nm Normalized Transmission 2.0 1.5 1.0 0.5 e -Dα/2 Fit L=α -1 =1.2μm 0.0 0 2000 4000 6000 Slit-Groove Distance (nm) Pacifici, et.al., Nature Photonics July 2007

Surface plasmon coupling in hole arrays: Role of symmetry and periodicity A B Domenico Pacifici C D a k i Dk=G=2p/p k SPP a=[200,800nm] p

Transmission spectra w/ lamp a=400nm 10 8 A Square Triang. B Normalized Transmission 6 4 2 0 4 3 2 C Penrose D Dodeca 1 0 400 500 600 700 800 Wavelength (nm) 500 600 700 800 900 Wavelength (nm)

SPP at a Ag/SiO 2 interface 2.0 1.9 1.8 n SPP 1.7 Normalized Transmission 1.6 1.5 1.4 400 500 600 700 800 900 1000 1100 20 18 16 14 12 10 400 nm 450 nm 500 nm 550 nm 600 nm λ (nm) Square Array - 150nm Ag - glass, glass 8 6 4 2 0 400 500 600 700 800 900 Wavelength (nm)

Quantum Dot Layer Increases Plasmonic Mode Refractive index

Universal Hole Array spectra Normalized Transmission 20 15 10 5 0 4 3 2 1 k SPP =G pq =2π(p 2 +q 2 ) 1/2 /a k SPP =G pq =4π(p 2 +q 2 +pq) 1/2 /(a 3 1/2 ) Square k=g 12 k=g 02 k=g 11 Penrose Triangular k=g 10 k=g k=g k=g 11 10 02 Dodecagonal a(nm)= 350 400 450 500 550 600 650 700 750 800 0 0.4 0.6 0.8 1.0 1.2 1.4 λ/(n SPP a) 0.4 0.6 0.8 1.0 1.2 1.4

Comparison between Coherent and Incoherent illumination 514.5nm Normalized Transmission 7 6 5 4 3 2 1 0 Square array Incoherent Coherent 200 300 400 500 600 700 800 a (nm) 514.5nm Normalized Transmission 12 11 10 9 8 7 6 5 4 3 2 1 0 Triangular array Incoherent Coherent 200 300 400 500 600 700 800 a (nm) 514.5nm Normalized Transmission 4 3 2 1 0 Penrose array Incoherent Coherent 200 300 400 500 600 700 800 a (nm) 514.5nm Normalized Transmission 4 3 2 1 0 Dodeca array Incoherent Coherent 200 300 400 500 600 700 800 a (nm)

Coherent! The Sun: an Incoherent Illumination Source... Coherence Length R c

Surface Plasmon Incoupling at Sub-λ (100 nm)groove Si k i Vivian Ferry, Luke Sweatlock Ag k Si i Ag

Coupling to Plasmonic and Photonic Modes in Si Films λ = 1 μm Plasmonic Photonic

Summary Plasmonic modes strongly confined < 100 nm in semiconductors 100x Light Absorption w.r.t. in plasmonic modes in CdSe w.r.t. bulk CdSe Incoupling to waveguide modes (SPP and dielectric) requires momentum matching structure short range order Incoupling structures with angular and spectral insensitivity under investigation Surface plasmon polariton modes well-suited to direct bandgap semiconductors