Recent progress in B K and ε K in lattice QCD

Similar documents
CP violation in kaons: BSM B-parameters and precision tests of ε K

arxiv: v5 [hep-lat] 6 Jul 2015

Testing the Standard Model with lattice QCD and effective field theory

Light pseudoscalar masses and decay constants with a mixed action

Kaon Physics in the Standard Model

Lattice QCD on Blue Waters

Light hadrons in 2+1 flavor lattice QCD

arxiv: v1 [hep-lat] 3 Nov 2009

D and B Meson Semileptonic Decays from the Lattice. Lattice QCD Meets Experiment Workshop April 26-27, 2010 Fermilab

Standard Model of Particle Physics

arxiv: v1 [hep-lat] 31 Oct 2015

Lattice QCD. Steven Gottlieb, Indiana University. Fermilab Users Group Meeting June 1-2, 2011

MILC results and the convergence of the chiral expansion

Isospin and Electromagnetism

Lattice QCD Calculation of Nucleon Tensor Charge

Expected precision in future lattice calculations p.1

Status of scalar quark matrix elements from Lattice QCD. André Walker-Loud

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

Extending precision tests of the standard model using Lattice QCD

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action

arxiv: v1 [hep-lat] 23 Nov 2018

arxiv: v1 [hep-lat] 12 Sep 2016

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

The kaon B-parameter from unquenched mixed action lattice QCD

Charmed Bottom Mesons from Lattice QCD

Lattice QCD Christine Davies University of Glasgow, HPQCD collaboration. Lepton-photon 2007 Daegu, Korea

Phenomenology with Lattice NRQCD b Quarks

Cascades on the Lattice

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

Lattice QCD calculation of direct CP violation and long distance effects in kaon mixing and rare decays

Measurement of the CKM Sides at the B-Factories

arxiv: v1 [hep-lat] 7 Oct 2007

PoS(LATTICE 2013)487. Vacuum polarization function in N f = 2+1 domain-wall fermion. Eigo Shintani. Hyung-Jin Kim

Copyright 2012 The Authors.

DAMTP, University of Cambridge HPQCD

Chiral perturbation theory with physical-mass ensembles

Lattice QCD calculation of nucleon charges g A, g S and g T for nedm and beta decay

High Precision. Charm Physics. HISQ quarks

Hadron Structure from Lattice QCD

PoS(LATTICE 2013)001. Quark Flavor Physics Review

arxiv: v1 [hep-lat] 20 Mar 2014

Unquenched spectroscopy with dynamical up, down and strange quarks

PoS(EPS-HEP2011)179. Lattice Flavour Physics

Measuring V ub From Exclusive Semileptonic Decays

Kaon semileptonic decay form factors with HISQ valence quarks

Flavour Physics Lecture 1

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The QCD Equation of State at μ B > 0 from Lattice QCD

arxiv: v1 [hep-lat] 25 Sep 2014

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

Meson Baryon Scattering

Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies

B Physics Beyond CP Violation

Lessons for New Physics from CKM studies

Color screening in 2+1 flavor QCD

The nucleon mass and pion-nucleon sigma term from a chiral analysis of lattice QCD world data

Lecture 12 Weak Decays of Hadrons

QCDOC A Specialized Computer for Particle Physics

Baryonic Spectral Functions at Finite Temperature

arxiv: v2 [hep-lat] 26 Sep 2012

Inclusive radiative electroweak penguin decays:

Recent results on CKM/CPV from Belle

V cb : experimental and theoretical highlights. Marina Artuso Syracuse University

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Shahram Rahatlou University of Rome

First results for two-flavor QCD with light quarks

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

Semileptonic B decays at BABAR

Recent V ub results from CLEO

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical, Mixed-Action Lattice QCD

Transverse Momentum Distributions of Partons in the Nucleon

Is the up-quark massless? Hartmut Wittig DESY

Nucleon structure from 2+1-flavor dynamical DWF ensembles

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Standard Model of Particle Physics

Precise determination of the lattice spacing in full lattice QCD

arxiv: v1 [hep-lat] 27 Feb 2017

SM & BSM Hadronic Matrix Elements heavy mesons and nucleons. Yasumichi Aoki (RBRC) RIKEN

Towards Exploring Parity Violation with Lattice QCD. Towards Exploring Parity Violation with Lattice QCD. Brian Tiburzi 30 July 2014 RIKEN BNL

Lattice QCD Calculations for Quark Flavor Physics. Matthew Wingate Institute for Nuclear Theory University of Washington

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

The HL-LHC physics program

Mass Components of Mesons from Lattice QCD

CP Violation and Rare Decays of K and B Mesons

Parton Physics and Large Momentum Effective Field Theory (LaMET)

Electromagnetic Form Factors

Hadronic B decays from SCET. Christian Bauer LBNL FPCP 2006, Vancouver

Heavy Quarks and τ. CVC test Michel parameters. Charm Mixing f D s

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED

The Gell-Mann Okubo Mass Relation among Baryons from Fully-Dynamical Mixed-Action Lattice QCD

arxiv:hep-lat/ v1 5 Oct 2006

V cb. Determination of. and related results from BABAR. Masahiro Morii, Harvard University on behalf of the BABAR Collaboration

Scalar leptoquarks from GUT to accommodate the B-physics anomalies

Determination of running coupling αs for N f = QCD with Schrödinger functional scheme. Yusuke Taniguchi for PACS-CS collaboration

Observation of Large CP Violation in the Neutral B Meson System

Particle physics today. Giulia Zanderighi (CERN & University of Oxford)

Transcription:

Recent progress in B K and ε K in lattice QCD Weonjong Lee on behalf of the SWME Collaboration Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University KIAS PPC Workshop, 11/12/2013 Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 1 / 38

Contents 1 Testing the Standard Model Indirect CP violation and B K 2 B K B K on the lattice Data Analysis for B K Continuum extrapolation of B K 3 Conclusion and Future Plan 4 Project: 1998 Present Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 2 / 38

Testing the Standard Model Indirect CP violation and B K CP Violation and B K Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 3 / 38

Testing the Standard Model Indirect CP violation and B K Kaon Eigenstates and ε Flavor eigenstates, K 0 = ( sd) and K 0 = (s d) mix via box diagrams. s W d s u,c,t d u,c,t u,c,t W W d W s d u,c,t s (a) (b) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 4 / 38

Testing the Standard Model Indirect CP violation and B K Kaon Eigenstates and ε Flavor eigenstates, K 0 = ( sd) and K 0 = (s d) mix via box diagrams. s W d s u,c,t d u,c,t u,c,t W W d W (a) s d u,c,t CP eigenstates K 1 (even) and K 2 (odd). K 1 = 1 2 (K 0 K 0 ) K 2 = 1 2 (K 0 + K 0 ) (b) s Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 4 / 38

Testing the Standard Model Indirect CP violation and B K Kaon Eigenstates and ε Flavor eigenstates, K 0 = ( sd) and K 0 = (s d) mix via box diagrams. s W d s u,c,t d u,c,t u,c,t W W d W (a) s d u,c,t CP eigenstates K 1 (even) and K 2 (odd). K 1 = 1 2 (K 0 K 0 ) K 2 = 1 2 (K 0 + K 0 ) Neutral Kaon eigenstates K S and K L. K S = (b) 1 1 + ε 2 (K 1 + εk 2 ) K L = s 1 1 + ε 2 (K 2 + εk 1 ) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 4 / 38

Testing the Standard Model Indirect CP violation and B K Indirect CP violation and direct CP violation Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 5 / 38

Testing the Standard Model Indirect CP violation and B K ε and ˆB K Experiment: ε = (2.228 ± 0.011) 10 3 e iφε, φ ε = 43.52(5). Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 6 / 38

Testing the Standard Model Indirect CP violation and B K ε and ˆB K Experiment: ε = (2.228 ± 0.011) 10 3 e iφε, φ ε = 43.52(5). Relation between ε and ˆB K in standard model. ε = exp(iφ ε ) 2 sin(φ ε ) C ε Imλ t X ˆB K + ξ + ξ LD X = Reλ c [η 1 S 0 (x c ) η 3 S 3 (x c, x t )] Reλ t η 2 S 0 (x t ) λ i = V isv id, x i = m 2 i /M 2 W, C ε = G2 F F 2 K m KM 2 W 6 2π 2 M K ξ = exp(iφ ε ) sin(φ ε ) ImA 0 ReA 0 ξ LD = Long Distance Effect 2% Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 6 / 38

Testing the Standard Model Indirect CP violation and B K ε and ˆB K Experiment: ε = (2.228 ± 0.011) 10 3 e iφε, φ ε = 43.52(5). Relation between ε and ˆB K in standard model. ε = exp(iφ ε ) 2 sin(φ ε ) C ε Imλ t X ˆB K + ξ + ξ LD X = Reλ c [η 1 S 0 (x c ) η 3 S 3 (x c, x t )] Reλ t η 2 S 0 (x t ) λ i = V isv id, x i = m 2 i /M 2 W, C ε = G2 F F 2 K m KM 2 W 6 2π 2 M K ξ = exp(iφ ε ) sin(φ ε ) ImA 0 ReA 0 ξ LD = Long Distance Effect 2% Definition of B K in standard model. B K = K 0 [ sγ µ (1 γ 5 )d][ sγ µ (1 γ 5 )d] K 0 8 3 K 0 sγ µ γ 5 d 0 0 sγ µ γ 5 d K 0 ˆB K = C(µ)B K (µ), C(µ) = α s (µ) γ 0 2b 0 [1 + α s (µ)j 3 ] Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 6 / 38

B K B K on the lattice B K on the lattice Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 7 / 38

B K B K on the lattice B K definition in standard model B K = K 0 [ sγ µ (1 γ 5 )d][ sγ µ (1 γ 5 )d] K 0 8 3 K 0 sγ µ γ 5 d 0 0 sγ µ γ 5 d K 0 ˆB K = C(µ)B K (µ), C(µ) = α s (µ) γ 0 2b 0 [1 + α s (µ)j 3 ] Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 8 / 38

B K B K on the lattice What do we calculate on the lattice? Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 9 / 38

B K Data Analysis for B K Data Analysis for B K Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 10 / 38

B K Data Analysis for B K Data for B K with am d = am s = 0.025 (20 3 64) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 11 / 38

B K Data Analysis for B K N f = 2 + 1 QCD: MILC coarse lattices a (fm) am l /am s geometry ens meas production 0.12 0.03/0.05 20 3 64 564 9 done (SNU) 0.12 0.02/0.05 20 3 64 486 9 done (SNU) 0.12 0.01/0.05 20 3 64 671 9 done (SNU) 0.12 0.01/0.05 28 3 64 274 8 done (BNL) 0.12 0.007/0.05 20 3 64 651 10 done (SNU) 0.12 0.005/0.05 24 3 64 509 9 done (SNU) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 12 / 38

B K Data Analysis for B K N f = 2 + 1 QCD: MILC fine lattices a (fm) am l /am s geometry ens meas production 0.09 0.0062/0.0310 28 3 96 995 9 done (SNU) 0.09 0.0031/0.0310 40 3 96 959 9 done (SNU) 0.09 0.0093/0.0310 28 3 96 950 9 done (SNU) 0.09 0.0124/0.0310 28 3 96 1996 9 done (SNU) 0.09 0.00465/0.0310 32 3 96 665 9 done (SNU) 0.09 0.0062/0.0186 28 3 96 950 9 done (KISTI) 0.09 0.0031/0.0186 40 3 96 701 9 done (SNU) 0.09 0.0031/0.0031 40 3 96 576 9 done (KISTI) 0.09 0.00155/0.0310 64 3 96 790 9 done (KISTI) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 13 / 38

B K Data Analysis for B K N f = 2 + 1 QCD: MILC superfine/ultrafine lattice a (fm) am l /am s geometry ens meas production 0.06 0.0036/0.018 48 3 144 744 9 done (SNU) 0.06 0.0025/0.018 56 3 144 799 9 done (KISTI) 0.06 0.0072/0.018 48 3 144 593 9 done (KISTI) 0.06 0.0054/0.018 48 3 144 617 9 done (SNU) 0.06 0.0018/0.018 64 3 144 826 6.6 (*KISTI) 0.06 0.0036/0.0108 64 3 144 600 0.1 (*SNU) 0.045 0.0030/0.015 64 3 192 747 1 (BNL) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 14 / 38

B K Data Analysis for B K Correlated Bayesian Fitting with SU(2) SChPT (a) X-fit (b) Y-fit MILC, 48 3 144, 642 cnfs, 9 meas at a = 0.06 fm. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 15 / 38

B K Data Analysis for B K Sea quarks and valence quarks Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 16 / 38

B K Continuum extrapolation of B K Continuum extrapolation of B K (1) Fitting functional form: f 1 = c 1 + c 2 (aλ Q ) 2 + c 3 L P Λ 2 X + c 4 S P Λ 2 X f 2 = f 1 + c 5 (aλ Q ) 2 L P Λ 2 + c 6 (aλ Q ) 2 S P X Λ 2 X f 3 = f 1 + c 5 αs 2 + c 6 (aλ Q ) 2 α s + c 7 (aλ Q ) 4 f 4 = f 2 + c 7 α 2 s + c 8 (aλ Q ) 2 α s + c 9 (aλ Q ) 4 Bayesian constraint = prior information: Λ Q = 0.3 GeV Λ X = 1.0 GeV c i = 0 ± 2 for i 2 Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 17 / 38

B K Continuum extrapolation of B K Continuum extrapolation of B K (2) Bayesian Fit to f 1 0.6 0.6 B K 0.58 0.56 0.54 coarse B K 0.58 0.56 0.54 fine 0.52 0.5 fine superfine ultrafine 0.48 0 0.1 0.2 0.3 0.4 0.5 L P 0.52 0.5 0.48 0.3 0.4 0.5 0.6 S P (c) B K vs. L P (d) B K vs. S P We exclude the MILC coarse ensembles in this fit. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 18 / 38

B K Continuum extrapolation of B K Continuum extrapolation of B K (3) Bayesian Fit to f 4 0.6 0.6 B K 0.58 0.56 0.54 coarse B K 0.58 0.56 0.54 fine 0.52 0.5 fine superfine ultrafine 0.48 0 0.1 0.2 0.3 0.4 0.5 L P 0.52 0.5 0.48 0.3 0.4 0.5 0.6 S P (e) B K vs. L P (f) B K vs. S P We exclude the MILC coarse ensembles in this fit. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 19 / 38

B K Continuum extrapolation of B K Continuum extrapolation of B K (4) fit func f 1 f 2 f 3 f 4 χ 2 /dof 1.38 1.38 1.37 1.37 Fitting quality of the Bayesian fits Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 20 / 38

B K Continuum extrapolation of B K Error Budget of B K [ SU(2), 4X3Y, NNNLO] cause error (%) memo statistics 0.62 see text matching factor 4.4 B (2) K (U1) discretization am l extrap 0.78 diff. of B1 and B4 fits am s extrap X-fits 0.33 varying Bayesian priors (S1) Y-fits 0.53 diff. of linear and quad. (F1) finite volume 0.5 diff. of V = and FV fit r 1 0.27 r 1 error propagation (F1) f π 0.4 132 MeV vs. 124.4 MeV Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 21 / 38

B K Continuum extrapolation of B K Current Status of B K (1) SWME: 2011 (PRL): B K (RGI) = ˆB K = 0.727 ± 0.004(stat) ± 0.038(sys) SWME: Lattice 2013 B K (RGI) = ˆB K = 0.7377 ± 0.0046(stat) ± 0.0337(sys) The statistical error remains approximately the same. The systematic error decrease slightly. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 22 / 38

B K Continuum extrapolation of B K Current Status of ε K SWME 2013: (in units of 1.0 10 3 ) ε K = 1.51 ± 0.18 ε K = 1.91 ± 0.21 for Exclusive V cb for Inclusive V cb Experiments: ε K = 2.228 ± 0.011 Hence, we observe 4.0/1.5 σ difference between the SM theory and experiments (exclusive/inclusive process). What does this mean? Breakdown of SM??? Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 23 / 38

B K Continuum extrapolation of B K Error Budget of Exclusive ε K cause error (%) memo V cb 51.6 Exclusive (FNAL/MILC) B K 14.4 SWME η 9.7 Wolfenstein η 3 8.1 η ct m c 6.9 Charm quark mass... Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 24 / 38

B K Continuum extrapolation of B K Current status of B K on the lattice SWME (this work) Aubin et al (2010) RBC-UKQCD (2011) BMW (2011) 0.6 0.7 0.8 0.9 1 1.1 B K (RGI) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 25 / 38

B K Continuum extrapolation of B K NPR (Current Focus) Non-perturbative Renormalization (Jangho Kim): Matching factor error: 4.4% 2.0 3.0% Exceptional Momentum: 2.0 3.0% Non-exceptional Momentum: 2.0 2.5% Basically, we want to trade the truncation error with the statistical error. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 26 / 38

B K Continuum extrapolation of B K Two-loop Perturbation (Current Focus) Two-loop Perturbation: (Jongjeong Kim and Kwangwoo Kim) Matching factor error: 4.4% 0.92% Automated Feynman Rule Generation. Automated Feynman Diagram Generation. Basically, we use non-zero quark masses to regulate the IR divergences. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 27 / 38

Conclusion and Future Plan Grand Challenges in the front Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 28 / 38

Conclusion and Future Plan Tentative Goals (1) 1 V cb, we need to calculate the following semi-leptonic form factors: B Dlν (1) B D lν (2) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 29 / 38

Conclusion and Future Plan Tentative Goals (1) 1 V cb, we need to calculate the following semi-leptonic form factors: B Dlν (1) B D lν (2) 2 We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang). Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 29 / 38

Conclusion and Future Plan Tentative Goals (1) 1 V cb, we need to calculate the following semi-leptonic form factors: B Dlν (1) B D lν (2) 2 We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang). 3 We need to improve the vector and axial current in the same level as the OK action (Yong-Chull Jang, and Jon Bailey). Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 29 / 38

Conclusion and Future Plan Tentative Goals (1) 1 V cb, we need to calculate the following semi-leptonic form factors: B Dlν (1) B D lν (2) 2 We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang). 3 We need to improve the vector and axial current in the same level as the OK action (Yong-Chull Jang, and Jon Bailey). 4 We plan to work on this issue using the OK heavy quark action in collaboration with FNAL and MILC. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 29 / 38

Conclusion and Future Plan Tentative Goals (2) 1 We would like to determine B K directly from the standard model with its systematic and statistical error 2%. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 30 / 38

Conclusion and Future Plan Tentative Goals (2) 1 We would like to determine B K directly from the standard model with its systematic and statistical error 2%. 2 We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 ( 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 30 / 38

Conclusion and Future Plan Tentative Goals (2) 1 We would like to determine B K directly from the standard model with its systematic and statistical error 2%. 2 We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 ( 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers. 3 Basically, we need to accumulate at least 9 times more statistics using the SNU GPU cluster machine. statistical error < 1.0% Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 30 / 38

Conclusion and Future Plan Tentative Goals (2) 1 We would like to determine B K directly from the standard model with its systematic and statistical error 2%. 2 We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 ( 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers. 3 Basically, we need to accumulate at least 9 times more statistics using the SNU GPU cluster machine. statistical error < 1.0% 4 In addition, we need to obtain the matching factor using NPR (Jangho Kim) and using the two-loop perturbation theory (Kwangwoo Kim). matching error < 1.0% Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 30 / 38

Conclusion and Future Plan Tentative Goals (3) 1 Long-Distance Effect ξ LD 2%: Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 31 / 38

Conclusion and Future Plan Tentative Goals (3) 1 Long-Distance Effect ξ LD 2%: 2 Here, the precision goal is only 10%. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 31 / 38

Conclusion and Future Plan Tentative Goals (3) 1 Long-Distance Effect ξ LD 2%: 2 Here, the precision goal is only 10%. 3 We need N f = 2 + 1 + 1 calculation on the lattice. MILC provides HISQ ensembles with N f = 2 + 1 + 1. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 31 / 38

Conclusion and Future Plan Tentative Goals (3) 1 Long-Distance Effect ξ LD 2%: 2 Here, the precision goal is only 10%. 3 We need N f = 2 + 1 + 1 calculation on the lattice. MILC provides HISQ ensembles with N f = 2 + 1 + 1. 4 As a by-product, a substantial gain is that the charm quark mass dependence might be under control in this way. (Brod and Gorbahn) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 31 / 38

Conclusion and Future Plan Ultimate Goals 1 As a result, we hope to discover a breakdown of the standard model in the level of 5σ or higher precision. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 32 / 38

Conclusion and Future Plan Ultimate Goals 1 As a result, we hope to discover a breakdown of the standard model in the level of 5σ or higher precision. 2 As a result, we would like to provide a crucial clue to the physics beyond the standard model. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 32 / 38

Conclusion and Future Plan Ultimate Goals 1 As a result, we hope to discover a breakdown of the standard model in the level of 5σ or higher precision. 2 As a result, we would like to provide a crucial clue to the physics beyond the standard model. 3 As a result, we would like to guide the whole particle physics community into a new world beyond the standard model. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 32 / 38

Conclusion and Future Plan Thank God for your help!!! Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 33 / 38

Project: 1998 Present SWME Collaboration 1998 Present Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 34 / 38

Project: 1998 Present SWME Collaboration Seoul National University (SNU): Prof. Weonjong Lee Dr. Jon Bailey and Dr. Nigel Cundy (RA Prof.) Dr. Jongjeong Kim (Postdoc) and Dr. Taegil Bae (Staff) 10 + 1 graduate students. Brookhaven National Laboratory (BNL): Dr. Chulwoo Jung Dr. Hyung-Jin Kim (Postdoc) Los Alamos National Laboratory (LANL): Dr. Boram Yoon (Postdoc) University of Washington, Seattle (UW): Prof. Stephen R. Sharpe. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 35 / 38

Project: 1998 Present Lattice Gauge Theory Research Center (SNU) Center Leader: Prof. Weonjong Lee. Research Assistant Prof.: Dr. Jon Bailey Research Assitant Prof.: Dr. Nigel Cundy Postdoctoral Fellow: Dr. Jongjeong Kim 10 + 1 graduate students Secretary: Ms. Sora Park. more details on http://lgt.snu.ac.kr/. Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 36 / 38

Project: 1998 Present Group Photo (2011) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 37 / 38

Project: 1998 Present Group Photo (2013) Weonjong Lee on behalf of the SWME Collaboration (SNU)KIAS PPC 2013 KIAS PPC 2013 38 / 38