Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Similar documents
Computational Methods. Chem 561

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Key concepts in Density Functional Theory (I) Silvana Botti

Density Functional Theory

Teoría del Funcional de la Densidad (Density Functional Theory)

Ab initio molecular dynamics

Car-Parrinello Molecular Dynamics

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Set the initial conditions r i. Update neighborlist. Get new forces F i

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

Quantum Mechanical Simulations

Algorithms and Computational Aspects of DFT Calculations

Density Functional Theory

Density Functional Theory. Martin Lüders Daresbury Laboratory

The Schrödinger equation for many-electron systems

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci)

Density Functional Theory

Introduction to density-functional theory. Emmanuel Fromager

Lecture 8: Introduction to Density Functional Theory

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

MD simulation: output

CE 530 Molecular Simulation

DFT calculations of NMR indirect spin spin coupling constants

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Intro to ab initio methods

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

The electronic structure of materials 2 - DFT

First-principles Molecular Dynamics Simulations

GEM4 Summer School OpenCourseWare

Ab initio phonon calculations in mixed systems

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

Ab Ini'o Molecular Dynamics (MD) Simula?ons

Computational Modeling Software and their applications

Density Functional Theory (DFT)

1 Density functional theory (DFT)

Pseudopotentials: design, testing, typical errors

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Introduction to first-principles modelling and CASTEP

Molecular Mechanics: The Ab Initio Foundation

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory

CHE3935. Lecture 4 Quantum Mechanical Simulation Methods Continued

Multi-Scale Modeling from First Principles

Time-dependent density functional theory

Electronic Structure Calculations and Density Functional Theory

Introduction to Computational Chemistry

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Electronic structure, plane waves and pseudopotentials

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density

Introduction to DFTB. Marcus Elstner. July 28, 2006

Module 6 1. Density functional theory

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Pseudopotentials for hybrid density functionals and SCAN

The Plane-Wave Pseudopotential Method

Solid State Theory: Band Structure Methods

Computational Chemistry I

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

Density Functional Theory: from theory to Applications

Bert de Groot, Udo Schmitt, Helmut Grubmüller

Tight-Binding Model of Electronic Structures

Recent advances in development of single-point orbital-free kinetic energy functionals

Electron Correlation

Al 2 O 3. Al Barrier Layer. Pores

Introduction to Computational Quantum Chemistry: Theory

Large Scale Electronic Structure Calculations

Supporting Information for. Dynamics Study"

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Before we start: Important setup of your Computer

André Schleife Department of Materials Science and Engineering

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

The Projector Augmented Wave method

Introduction to First-Principles Method

Key concepts in Density Functional Theory

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Water Oxidation on Porphyrines. A First-principles Study ADAM ARVIDSSON

Introduction to Vibrational Spectroscopy

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Ab initio molecular dynamics

Ab initio molecular dynamics: Basic Theory and Advanced Met

Projector augmented wave Implementation

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Ab initio molecular dynamics and nuclear quantum effects

Introduction to Computational Chemistry: Theory

Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler

Dept of Mechanical Engineering MIT Nanoengineering group

Integrated Computational Materials Engineering Education

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface

Parameterization of a reactive force field using a Monte Carlo algorithm

Chemistry 334 Part 2: Computational Quantum Chemistry

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

The rôle of surfaces in prebiotic chemistry. Piero Ugliengo University of Torino Dip. Chimica Via P. Giuria, 7 - Torino

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Transcription:

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland

Cement Phase Composition C-S-H H Solid Solution Model C-S-H C-S-H Lothenbach &Winnefelf(2006) after Kulik & Kersten (2001) Lothenbach et al. (2008)

Possible end-members for Amorphous C-S-H C H Solid Solutions CSH C-S-H (I): H Tobermorite (I): Anomalous Solid Solution Normal Tobermorite Ca 5-x Si 6 O 17-2x 2x(OH) Solid Solution 2x 5H 2 O Ca/Si = = 0.60 0.60 0.75 0.75 Ca 4 Si 6 O 15 (OH) 15 2 5H 2 O Ca 4.5 Si 4.5 6 O 16 (OH) 16 5H 2 O C-S-H H (II): Normal Tobermorite Jennite Solid Solution Ca/Si = 0.75 1.50 Ca 4.5 Si 6 O 16 (OH) 5H 2 O Ca 9 Si 6 O 18 (OH) 6 8H 2 O Further relevant C-S-H C H Phases Xonotlite: Ca 6 Si 6 O 17 (OH) 2

Nuclear Energy and Safety Research Department Basic Structural Elements of C-S-H Phases Xonotlite 11 Å Tobermorite Jennite Ca6Si6O17(OH)2 Ca4+xSi6O15+2x(OH)2-2x 5H2O Ca9Si6O18(OH)6 8H2O 11 Å 7Å Silicate chain Ca-Layer c b a c b b

Method Molecular Dynamics (MD) Newton Equation M k 2 d R dt k 2 = U ( R) R k Must be known Γ({ R k},{ R& k}) Ensemble of position and velocities Average over Ensemble Structure: Bond distances Crystallographic positions Thermodynamics: Energies Temperature Dynamics: IR spectra Diffusion

Interaction Potentials Nuclear Energy and Safety Research Department Ab Initio methods Solve Schrödinger equation to obtain energy and forces 2 h 2m 2 Ψ + UΨ = EΨ Empirical force field methods intra-molecular: harmonic bond stretching, bending inter-molecular: electrostatic and van der Waals interaction Ab Initio <=> Empirical Computationally expensive Valid for any P-T conditions and chemistry Correct description of bond breaking/forming up to ~ n 10 2 atoms up to ~ n 10 ps Fast computation Must be calibrated for the system of interest Fail to describe bond breaking/forming up to ~ n 10 6 atoms up to ~ n 10 2 ns

Density functional theory Hohenberg & Kohn, 1964; Kohn & Sham 1965; Nuclear Energy and Safety Research Department Schrödinger Equation HΨ( R N ) = EΨ( R3 3 N Kohn-Sham Equation ) Exact Hamiltonian 3N dimensional problem far too complex :-(( H H KS KS ψ ( r ψ 1 N 3 ( r ) = ε... 3 ) = ε KS 1 ψ ( r KS N 1 ψ N 3 ) ( r 3 ) Approximate Hamiltonian 3 dimensional problem but can be solved! :-)) H KS = Kinetic Energy Coulomb Interactio n of Electrons 678 Nuclei Electrons Electrons 64748 64748 1 2 el + Vˆ ext ( Rnuc ) + Vˆ Hartree [ ρ ] + 142 4444 44 244444443 Exact Coulomb Interactio n Quantum effects 64748 el Vˆ xc[ ρ ] 14243 Approximat ion el ρ ( r) = ψ i ( r) i 2 Major uncertainty

xc Nuclear Energy and Safety Research Department Approximations for Exchange and Correlation functional el local density approximation (LDA) Vˆ xc[ ρ ( r homogeneous electron gas generalized gradient approximation (BLYP, PBE,...) ˆ el el V [ ρ ( r), ρ ( r)] Vˆ )] Pseudopotential approximation Radial Electron Wavefuctions in Si Atom an example for Si atom all electro vs. pseudo wavefunctions xc Core Region Valence Region Core Region Valence Region 1s 3s Plane Waves ψ = e i k 2s 0 1 2 3 4 R [bohr] c i, k ikr Basis set 3s pseudowavefunction 3s true wavefunction 0 1 2 3 4 R [bohr] Gaussian basis set ψ = i,μϕ μ ϕ μ ( α, l, m, n) = Ne i c αr l m n μ 2 x y z

DFT approach used in this work CPMD code (used for oblique supercell) Plane Wave basis set 70 Ry cut-off BLYP functional, MT-pseudopotentials Car-Parrinello MD CP2K/Quickstep code (used for orthogonal supercell) Gaussian and Plane Wave basis set Triple-ζ basis for O and H, double-ζ for Si and Ca PBE functional, Goedeker - pseudopotentials Born Oppenheimer MD

Q 2 Xonotlite Ca 6 Si 6 O 17 (OH) 2 Ideal structure from X-ray X studies: Q 3 Experimental Observations NMR: Presence of both Q 2, Q 3 and Q 1 sites Presence OH with different environment and molecular H 2 O IR and TG/DTA: Presence of molecular H 2 O Calculated IR spectra EDS: Ca:Si > 1.0 in disordered samples Experimental arb. units 3800 3600 4000 3000 2000 3200 2800-1 ν Η [cm ] 2400 2000 Possible defect formation mechanism {Si} X Si + 2H 2 O ={4H} X Si + SiO 2 CPMD, BLYP, MT-PP, 80 Ry

Assumed Defect Formation Mechanism {Si} X Si + 2H 2 O ={4H} X Si + SiO 2 Δ57 kj/mol Δ40 kj/mol Δ5 5 kj/mol Δ0 0 kj/mol {4H} x Q3 {4H} x Q2 {8H} x {Q3,Q3} {8H} x {Q2,Q3} CPMD, BLYP, MT-PP, 80 Ry Churakov & Mandaliev (2008) CCR

Thermodynamics of Defects in Xonotlite 2{H = 4 } Q {Si} + 3 Q {Si 3 2} Q3, Q {H 3 8} Q3, Q 3 [{Si2} ][ {H8} ] 3 3 3 3 ΔE Q, Q Q, Q = exp 2 [{H } {Si} ] RT 4 Q 3 Q { Si } 2 Q 3, Q3 1.0 { H } 8 Q Q 3 3, 3 mole fraction 0.8 0.6 0.4 0.2 300K 500K { H 4 } Q { Q 3 Si} 3 0 0 0.2 0.4 0.6 0.8 1.0 + 2 Churakov & Mandaliev (2008) CCR

Structure of Defects in Xonotlite Nuclear Energy and Safety Research Department Idealized Structure Structure with Defects Si-OH {4H} x Q3 Ca-OH {8H} x {Q3,Q3} H 2 O Churakov & Mandaliev (2008) CCR

IR spectra Nuclear Energy and Safety Research Department Ideal arb. units Experimental 4000 3000 2000 3800 3600 3200 2800-1 ν Η [cm ] 2400 2000 arb. units Q 3 O10 O9 O5 O6 Structure with defects O1 3800 3600 3200 2800-1 ν Η [cm ] 2400 2000 Churakov & Mandaliev (2008) CCR

Structure of 11 Å Tobermorite Nuclear Energy and Safety Research Department Anomalous Tobermorite Ca 4 Si 6 O 15 (OH) 2 5H 2 O Normal Tobermorite Ca 4.5 Si 6 O 16 (OH) 5H 2 O

Anomalous 11 Å Tobermorite Ca 4 Si 6 O 15 (OH) 2 5H 2 O Nuclear Energy and Safety Research Department 20 ps NVE ab initio MD trajectory T~ 310 K cp2k/quickstep/gpw, PBE, DZP(Ca,Si), TZ2P(O,H)

Preserential orientation of water molecules in anomalous 11 Å Tobermorite A B C D O2 O1 W2 O7 W2 W6 W1,3 O6 W6 O1,O7 W2 W6 W1,3 O6 W6 O1,O7 W2 W3 O1,W2 O7,W2 W1 W6 O6 W3 W2 W1 W6 c c c c b a a b Churakov (2009) Amer. Miner.

Preferential orientation of water molecules in anomalous 11 Å Tobermorite 506K 321K c W3 O7,W2 O1,W2 W6 W1 O6 W3 W2 W6 W1-3 -2-1 0 1 2 3 c, [Å] arb. units W3 W1 arb. units ΔR HB, [Å] h(t) 2 1 0-1 -2 1-1 321K 506K W1 W3-3 -2-1 0 1 2 3 c, [Å] 0 5 10 15 20 b Churakov (2009) Amer. Miner. ΔR HB, [Å] h(t) 2 1 0-1 -2 t, [ps] 1-1 0 5 10 15 20 t, [ps]

Normal 11 Å Tobermorite Ca 4.5 Si 6 O 16 (OH) 5H 2 O Nuclear Energy and Safety Research Department Merlino et al. (2001) X-ray diffraction

Supercell setup Normal 11 Å Tobermorite Ca 4.5 Si 6 O 16 (OH) 5H 2 O Nuclear Energy and Safety Research Department Set 0 Set I Set II Ca2* b a Set III Set IV Set V Merlino et al. (2001) X-ray diffraction

Normal 11 Å Tobermorite Nuclear Energy and Safety Research Department Ca 4.5 Si 6 O 16 (OH) 5H 2 O Snapshot form ab initio MD AI MD, PBE, cp2k/quickstep/gpw, 310 K Churakov (2009) EJM

X-ray diffraction Normal Tobermorite Nuclear Energy and Safety Research Department Snapshot form ab initio MD Merlino et al. (2001) cp2k/quickstep/gpw, PBE, 310 K

Structure of interlayer Ca ion in Normal Tobermorite W6 O7 O6 O1 W6 O1,7 O6 W3 W2 W1 W2 W1,3 W6 O6 W6 O1,7 O2 O6 c c b a Churakov (2009) EJM

Calculated vibrational density of state Normal 11 Å Tobermorite W6 O7 W3 W6 O6 W2 O6 O1 W1 b c arb. units CaW1, CaW3 W1, W3 W6 W2 CaW2 c O2 O1 W2 O7 b W2 c W6 W1,3 O6 W6 a O1,O7 W2 OH6 2600 2800 3000 3200 3400 3600 3800 4000 ν, cm -1 Measured IR spectra 3300 3600 2800 3200 3600 ν, cm -1 Yu et al. (1999) 4000 Churakov (2009) EJM

Jennite Experimental Observations Ca 9 Si 6 O 18 (OH) 6 8H 2 O XRD: Presence of both Q 2 sites only Presence >Ca-OH linkage only NMR: Presence of both Q 2, and Q 1 sites Presence both >Si-OH and >Ca-OH linkage Bonaccorsi et al. (2004)

Jennite Ca 9 Si 6 O 18 (OH) 6 8H 2 O Dynamic Proton Distribution log(ρ H (Γ)) ~ -ΔE/kT O13 O12 R[O8-W1] 2.0 2.5 3.0 O8..H..O13 O8..H..O13 W2 W1 O14 R[O8-W1] 2.0 2.5 3.0 O8..H..W2 R[W1H] - R[O8H] O8..H..W2 c O11 O13 O12 O2 O11 O2 R[O8-W1] 2.0 2.5 3.0 R[W1H] - R[O8H] O8..H..W1 O8..H..W1 b -1.0-0.5 0.0 0.5 1.0 R[W1H] - R[O8H] ΔE = 10-15 kj mol -1 310 K MD CPMD, BLYP, MT-PP, 70 Ry Churakov (2008) CNR

Summary structure of C-S-H C H phase Xonotlite, Tobermorite and Jennite Nuclear Energy and Safety Research Department Distribution of water and cations in the interlayer of tobermorite and jennite IR and NMR spectra are interpreted on the basis of calculation Preferential formations of defects in Q 3 sites in xonotlite Preferential stability of defects in bridging tetrahedra of CSH phases Dangling O-sites O on the bridging Si tetrahedra of jennite are de-protonated The dangling de-protonated sites are likely sorption sites

Acknowledgments Peter Mandaliev Jan Tits Erich Wieland Dmitri Kulik Marcella Iannuzzi-Mauri Matthias Krack