Chapter 14 Acids and Bases

Similar documents
Chapter 15 - Acids and Bases Fundamental Concepts

Chapter 16 - Acids and Bases

Precipitation Reactions

Chapter 4. Types of Chemical Reactions

Chapter 9 Acid-base reactions

Acids and Bases. Unit 10

Acids and Bases. Properties, Reactions, ph, and Titration

Chapters 15 & 16 ACIDS & BASES ph & Titrations

The Chemistry of Acids and Bases

Unit 10: Acids and Bases

The Chemistry of Acids and Bases

Acids and Bases. Feb 28 4:40 PM

CHAPTER 19. Acids, Bases, and Salts Acid Base Theories

What are Acids and Bases? What are some common acids you know? What are some common bases you know? Where is it common to hear about ph balanced

Acids and Bases. Bases react with acids to form water and a salt. Bases do not commonly with metals.

Chapter 9 Acids & Bases

Chapter 14: Acids and Bases

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Unit Nine Notes N C U9

Acids and Bases. Click a hyperlink or folder tab to view the corresponding slides. Exit

UNIT #11: Acids and Bases ph and poh Neutralization Reactions Oxidation and Reduction

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

Unit 4 Toxins, Section IV, L17-22

Solutions. when table salt is mixed with water, it seems to disappear, or become a liquid the mixture is homogeneous

Electrolytes, Acids and Bases ) 3

Acids and Bases. Two important classification of compounds - Acids and Bases. Properties of BASES

Chapter 10. Acids, Bases, and Salts

15 Acids, Bases, and Salts. Lemons and limes are examples of foods that contain acidic solutions.

Acids and Bases. Chapters 20 and 21

Chapter 7 Acids and Bases

Indicator Color in acid (ph < 7) Color at ph = 7 Color in base (ph > 7) Phenolphthalein Bromothymol Blue Red Litmus Blue Litmus

Strong and Weak. Acids and Bases

Practice Packet Unit 10: Acids and Bases

4. Aqueous Solutions. Solution homogeneous mixture of two components

HA(s) + H 2 O(l) = H 3 O + (aq) + A (aq) b) NH 3 (g) + H 2 O(l) = NH 4 + (aq) + OH (aq) Acid no. H + type base no. OH type

Properties of Acids and Bases

Acids and Bases. Chapter 11

Chapter 10. Acids and Bases

The Chemistry of Acids and Bases

Chem 30A. Ch 14. Acids and Bases

Acids, Bases & Salts ch Mar

ACIDS, BASES & SALTS DR. RUCHIKA YADU

Grace King High School Chemistry Test Review

Aqueous solutions of acids have a sour Aqueous solutions of bases taste bitter

ACIDS, BASES, AND SALTS

ADVANCED PLACEMENT CHEMISTRY ACIDS, BASES, AND AQUEOUS EQUILIBRIA

-a base contains an OH group and ionizes in solutions to produce OH - ions: Neutralization: Hydrogen ions (H + ) in solution form

Name Date Class ACID-BASE THEORIES

SCHOOL YEAR CH- 13 IONS IN AQUEOUS SOLUTIONS AND COLLIGATIVE PROPERTIES SUBJECT: CHEMISTRY GRADE : 11 TEST A

Definition of Acid. HCl + H 2 O H 3 O + + Cl

Acids, Bases and ph Chapter 19

Chemistry I Notes Unit 10: Acids and Bases

Chapter 14: Acids and Bases

Definition of Acid. HCl + H 2 O H 3 O + + Cl

Acids - Bases in Water

Notes: Unit 10 Acids and Bases

battery acid the most widely used industrial chemical Hydrochloric acid, HCl muriatic acid stomach acid Nitric acid, HNO 3

Acids and Bases. Chapter 11

Name. Academic Chemistry. Acid Base. Notes. Unit #14 Test Date: cincochem.pbworks.com

8.1 Explaining the Properties of Acids & Bases. SCH4U - Chemistry, Gr. 12, University Prep

Aqueous Reactions and Solution Stoichiometry (continuation)

Toxins 4/27/2010. Acids and Bases Lab. IV-17 to IV-22

Families of Chemical Compounds. Chapter 9

Mr. Storie 40S Chemistry Student Acid and bases Unit. Acids and Bases

INTRODUCTION TO ACIDS AND BASES

Acids and Bases. Acids and Bases in our Lives. Chapter 11

Part 01 - Assignment: Introduction to Acids &Bases

CHEMISTRY Matter and Change

Chapter 14. Objectives

ACIDS & BASES PROPERTIES OF ACIDS ACIDS PROPERTIES OF ACIDS PROPERTIES OF ACIDS 11/1/2016

Equations. M = n/v. M 1 V 1 = M 2 V 2 if the moles are the same n 1 n 2 you can cancel out the n s. ph = -log [H + ] poh = -log [OH - ] ph + poh = 14

AREA 1: WATER. Chapter 6 ACIDS AND BASES. 6.1 Properties of acids and bases

Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from

Acids and Bases. Acids and Bases in. our Lives. Acids and Bases in our Lives. Acids and Bases in our Lives. Chapter 11

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

Name: Regents Chemistry: Dr. Shanzer. Practice Packet. Chapter 13: Acids & Bases

HCl and HNO 3 are monoprotic meaning Sulfuric acid is, 2 Protons (also called polyprotic) Phosphoric acid is, 3 protons. (also called polyprotic)

4.5: Acids and Bases. SCH3U: Solutions and Solubility. Properties of Pure and Aqueous Substances. Arrhenius Theory. Acid:

UNIT SEVEN PROBLEM SET CHEMISTRY LEE

Acids, Bases, & Neutralization Chapter 20 & 21 Assignment & Problem Set

Reactions in Aqueous Solutions

Acids and Bases Unit 13

Acids and Bases Unit 11

Solutions, Acids, & Bases Unit 6 - IB Material

EXPERIMENT 11 Acids, Bases, and ph

Name%% %Period%% % Precipitation+Reaction+Practice+

Unit 2 Acids and Bases

Unit 12: Acids & Bases. Aim: What are the definitions and properties of an acid and a base? Properties of an Acid. Taste Sour.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Acids and Bases in. our Lives. Acids and Bases in our Lives. Acids and Bases in our Lives. Chapter 11

Acid and Bases. Physical Properties. Chemical Properties. Indicators. Corrosive when concentrated. Corrosive when concentrated.

Chapter 9: Acids, Bases, and Salts

Notes: Unit 10 Acids and Bases

Chapter Outline. Ch 8: Aqueous Solutions: Chemistry of the Hydrosphere. H 2 S + Cu 2+ CuS(s) + 2H + (Fe, Ni, Mn also) HS O 2 HSO 4

Properties of Acids and Bases SECTION 1

Amount of substance dissolved in 1 L of water

Chapter 14 Properties of Acids and Bases

Chapter 15 Acids and Bases

ELECTROLYTES & NEUTRALIZATION

Acid-base Chemistry. Unit 11.1: Into to acid base chemistry. Unit 11. Name:

Transcription:

Chapter 14 Acids and Bases

General Properties of Acids 1. An acid tastes sour - acidus = Latin, sour; acetum= Latin, vinegar 2. An acid turns indicator dye litmus from blue to red. 3. An acid reacts with certain metals (Fe, Sn, Zn, Mg). 4. An acid is an electrolyte. 5. An acid reacts with bases to form salts and water

1. HNO2 is named A) hydronitric acid. B) hydronitrous acid. C) nitric acid. D) nitrous acid. E) hydrogen nitrite. NO3 - = nitrate NO2 - = nitrite

Common Acids Name Formula Uses Strength Perchloric HClO4 explosives, catalysts Strong Nitric HNO3 explosives, fertilizers, dyes, glues Strong Sulfuric Hydrochloric Phosphoric H2SO4 HCl H3PO4 explosives, fertilizers, dyes, glue, batteries metal cleaning, food prep, ore refining, stomach acid fertilizers, plastics, food preservation Strong Strong Moderate Chloric HClO3 explosives Moderate Acetic HC2H3O2 plastics, food preservation, vinegar Weak Hydrofluoric HF metal cleaning, glass etching Weak Carbonic H2CO3 soda water, blood buffer Weak Hypochlorous HClO sanitizer Weak Boric H3BO3 eye wash Weak

Sources of Acids SO3 + H2O ----------> H2SO4 Sulfuric Acid NO2 + H2O ----------> HNO3 Nitric Acid CO2 + H2O ----------> H2CO3 Carbonic Acid 2 NaCl + H2SO4 ----------> Na2SO4 + 2 HCl Hydrochloric Acid

General Properties of Bases 1. A base tastes bitter 2. A base turns indicator dye litmus from red to blue. 3. A base feels slippery or soapy when mixed with a small amount of water 4. A base reacts with acids to form salts and water

2. What is the chemical formula for the base calcium hydroxide? A) CaOH B) CaH C) CaH2 D) Ca(OH)2 E) Ca2(OH) Ca 2+ OH -

Common Bases Name Formula Common Name Uses Strength Sodium Hydroxide NaOH Lye, Caustic Soda soap, plastic production, petroleum refining Strong Potassium Hydroxide KOH Caustic Potash soap, cotton processing, electroplating Strong Calcium Hydroxide Ca(OH)2 Slaked Lime cement Strong Sodium Bicarbonate NaHCO3 Baking Soda food preparation, antacids Weak Magnesium Hydroxide Mg(OH)2 Milk of Magnesia antacids Weak Ammonium Hydroxide NH4OH Ammonia Water fertilizers, detergents, explosives Weak

Sources of Bases CaO + H2O ----------> Ca(OH)2 Calcium hydroxide Li2O + H2O ----------> 2 LiOH Lithium hydroxide 2 Na + 2 H2O ----------> 2 NaOH + H2 Sodium hydroxide Ca + 2 H2O ----------> Ca(OH)2 + H2

Molecular Definitions of Acids and Bases

Acids and Bases in Solution Acids ionize in water to form H + ions. (More precisely, the H+ from the acid molecule is donated to a water molecule to form hydronium ion, H3O + ) Bases dissociate in water to form OH- ions. (Bases, such as NH3, that do not contain OH- ions, produce OH- by pulling H + off water molecules.) In the reaction of an acid with a base, the H + from the acid combines with the OH- from the base to make water. The cation from the base combines with the anion from the acid to make a salt. acid + base salt + water

Arrhenius Theory

3. Which of the following can act as an Arrhenius base? A) Ca(OH)2 B) H2O C) KOH D) H2SO4 E) Two of the above

Brønsted-Lowry Theory Brønsted-Lowry Acid-Base Reactions involve transfer of protons. A Brønsted-Lowry Acid is a proton donor. A Brønsted-Lowry Base is a proton acceptor.

Brønsted-Lowry Theory An acid-base reaction involves proton transfer: H-A + [B:]- -> A:- + H-B [H-A] + B: -> [A:]- + [H-B] + [H-A:]- + B: -> [:A:] 2- + [H-B] + [H-A] + + B: -> A: + [H-B] +

Brønsted-Lowry Acids A Brønsted-Lowry Acid is a proton donor. Any material with a H is a potential proton donor, but because of molecular structure, one or more protons are sometimes more likely to be transferred.

Molecular Models of Selected Acids

4. Which of the following can act as a Brønsted Lowry acid? A) NH3 B) NaOH C) BF3 D) HBr E) Two of the above

Ionization of an Acid The ionization of an acid in water is more accurately written as: HCl + H2O ----------> Cl - + [H3O] + - + proton donor proton acceptor chloride ion hydronium ion

Ionization of an Acid

Brønsted-Lowry Bases A Brønsted-Lowry Base is a proton acceptor. Any material with a lone pair of electrons is a potential proton acceptor, but because of molecular structure, one or more atoms with lone pairs may be more likely to accept a proton.

Bronsted Lowry Acid Base Reaction

Conjugate Pairs 1. In a Brønsted-Lowry reaction, the original base becomes an acid in the reverse reaction, and the original acid becomes a base in the reverse process 2. Each reactant and product are a conjugate pair. 3. The original base becomes a conjugate acid, and the original acid becomes a conjugate base

Conjugate Acid Base Pairs H-A + :B :A - + H-B + acid base conjugate conjugate base acid HCHO 2 + H 2 O CHO 2 - + H 3 O + acid base conjugate conjugate base acid H 2 O + NH 3 : HO - + NH 4 + acid base conjugate conjugate base acid

Conjugate Pairs H2O and OH- are an acid/base conjugate pair. NH3 and NH4+ are an base/acid conjugate pair.

5. Identify the two Brønsted Lowry acids in the following reaction: H3PO4 + NH3 NH4 + + H2PO4 A) H3PO4 and NH3 B) H3PO4 and NH4 + C) H3PO4 and H2PO4 D) NH3 and NH4 + E) NH3 and H2PO4

6. What is the conjugate acid of H2C6H5O6? A) C6H5O6 3 B) HC6H5O6 2 C) H2C6H5O6 D) H3C6H5O6 E) H4C6H5O6 +

Lewis Acids and Bases electron pair donor = Lewis Base = nucleophile electron pair acceptor = Lewis Acid = electrophile Lewis acid-base reactions include all the previously described acid-base reactions plus additional types.

Molecules as Lewis Acids and Bases

The reaction of the Lewis acid BF3 with the Lewis base NH3 - +

Reactions of Acids and Bases

Acid-Base Reactions Also called neutralization reactions because the acid and base neutralize each other s properties 2 HNO3(aq) + Ca(OH)2(aq) Ca(NO3)2(aq) + 2 H2O(l) Note that the cation from the base combines with the anion from the acid to make the water soluble salt. The net ionic equation for an acid-base reaction is H + (aq) + OH-(aq) H2O(l) (as long as the salt that forms is soluble in water)

Neutralization - The reaction of an acid and a base HCl + NaOH ----------> NaCl + H2O

7. What is the salt formed in the neutralization reaction between nitric acid and potassium hydroxide? A) KCl B) KNO2 C) KNO3 D) H2O E) KH HNO3 (aq) + KOH (aq) KNO3 (aq) + H2O (l)

Other Useful Acid-Base Reactions 1. Mg(OH)2 + 2 HCl ----------> 4 H2O + MgCl2 2. CaCO3 + H2SO4 ----------> H2O + CO2 + CaSO4 3. NaHCO3 + RCOOH ----------> H2O + CO2 + RCOO - Na +

Titrations

A specific volume of the solution to be titrated is added to a flask. An indicator is added. A titrant (OF KNOWN CONCENTRATION) is added to the solution being titrated until the indicator changes colore. The volume of titrant added from the buret is measured. THE CONCENTRATION OF THE ORIGINAL SOLUTION IS THEN DETERMINED BY CALCULATION.

8. A 25.0 ml solution of 3.00 M hydrochloric acid requires 65.6 ml of NaOH solution to reach the endpoint. Calculate the original concentration of the NaOH. A) 1.14 M B) 0.381 M C) 0.257 M D) 3.00 M E) 3.43 M HCl (aq) + NaOH (aq) NaCl (aq) + H2O (l) How many moles of HCl reacted? How many moles of NaOH reacted? In what volume was the NaOH contained? What is the molarity of the NaOH solution? 3.00 mol HCl 0.0250 L HCl solution X X 1.00 L HCl solution 1.00 mol NaOH 1.00 mol HCl = 0.0750 mol NaOH M = mol/l = 0.0750 mol NaOH 0.0656 L NaOH solution = 1.14 M NaOH

9. A 25.0 ml solution of 3.00 M phosphoric acid requires 65.6 ml of NaOH solution to reach the endpoint. Calculate the original concentration of the NaOH. A) 1.14 M B) 0.381 M C) 0.257 M D) 3.00 M E) 3.43 M H3PO4 (aq) + 3 NaOH (aq) Na3PO4 (aq) + 3 H2O (l) How many moles of H3PO4 reacted? How many moles of NaOH reacted? In what volume was the NaOH contained? What is the molarity of the NaOH solution? 3.00 mol H3PO4 0.0250 L H3PO4 solution X 1.00 L X H3PO4 solution 3.00 mol NaOH 1.00 mol H3PO4 = 0.225 mol NaOH M = mol/l = 0.225 mol NaOH 0.0656 L NaOH solution = 3.43 M NaOH

Why not use M1V1 = M2V2 for titrations?? HCl (aq) + NaOH (aq) NaCl (aq) + H2O (l) 3.00 mol HCl 0.0250 L HCl solution X X 1.00 L HCl solution 1.00 mol NaOH 1.00 mol HCl = 0.0750 mol NaOH H3PO4 (aq) + 3 NaOH (aq) Na3PO4 (aq) + 3 H2O (l) 3.00 mol H3PO4 0.0250 L H3PO4 solution X 1.00 L X H3PO4 solution 3.00 mol NaOH 1.00 mol H3PO4 = 0.225 mol NaOH

10. What volume of a 0.4590 M NaOH solution is required to reach the endpoint in the titration of 25.00 ml sample of 0.3669 M H2SO4? H2SO4 (aq) + 2 NaOH (aq) Na2SO4 (aq) + 2 H2O (l) A) 39.97 ml B) 31.28 ml C) 26.66 ml D) 19.98 ml E) 25.00 ml How many moles of H2SO4 reacted? How many moles of NaOH reacted? What volume of NaOH was needed? 0.3669 mol H2SO4 0.02500 L H2SO4 solution X X 1.00 L H2SO4 solution 2.00 mol NaOH 1.00 mol H2SO4 0.01834 mol NaOH X 1.00 L NaOH solution 0.4590 mol NaOH = 0.01834 mol NaOH = 0.03997 L NaOH solution

2 NaOH (aq) + H2SO4 (aq) Na2SO4 (aq) + 2 H2O (l) L solution A L solution B M M mol compound A mol/mol ratio mol compound B

The Big Picture of Stoichiometry Grams of A Grams of B Molar Mass Molar Mass Liters of a Solution of A Molarity Moles of A Moles of B Molarity Liters of a Solution of B Avogadro s Number Avogadro s Number Particles of A Particles of B Coefficients