PhET Simulation Exploration Models of the Hydrogen Atom

Similar documents
PhET Simulation Exploration Models of the Hydrogen Atom

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

PhET Light Emission and Lasers (27 points available x 2/3 = 18 points max score)

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

Models of the Atom. Spencer Clelland & Katelyn Mason

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4

The ELECTRON: Wave Particle Duality

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Review Models of the Atom

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

3.03 EMR and the H-atom

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

What are the component of light? How are the electrons arranged in the atom? What is the relationship between light and the atom?

Let s start with ionization energy - The minimum energy needed to remove and electron from an atom.

Introduction to Quantum Physics. Early Atomic Physics

( J s)( m/s)

Modern Physics- Introduction. L 35 Modern Physics [1] ATOMS and classical physics. Newton s Laws have flaws! accelerated charges radiate energy

298 Chapter 6 Electronic Structure and Periodic Properties of Elements

CHEMISTRY Matter and Change

The Photoelectric Effect

Photoelectric Effect PhET Lab

L 35 Modern Physics [1]

Chapter 5: Electrons in Atoms

Student Exploration: Bohr Model of Hydrogen

Bellwork: Calculate the atomic mass of potassium and magnesium

The Hydrogen Atom According to Bohr

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

29:006 FINAL EXAM FRIDAY MAY 11 3:00 5:00 PM IN LR1 VAN

The origins of atomic theory

Atomic Structure and the Periodic Table

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom

Professor K. Atomic structure

History of the Atomic Model

Webquest: Atomic Theories and Models. Answer the following questions regarding the progression of the model of the atom.

Planck s Quantum Hypothesis Blackbody Radiation

OpenStax-CNX module: m The Bohr Model. OpenStax College. Abstract

democritus (~440 bc) who was he? theorized: A Greek philosopher

Modern Physics. Overview

Physics 1C. Lecture 28D

Spectral Lines. I've done that with sunlight. You see the whole rainbow because the prism breaks the light into all of its separate colors.

Historical Background of Quantum Mechanics

Chemistry Objective: SWBAT describe the changes made to the model of the atom over time. Chemistry Warmup:

Atomic Theory Development

Chapter 4 Lesson 2 Notes

Bohr. Electronic Structure. Spectroscope. Spectroscope

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Chapter 6 - Electronic Structure of Atoms

The Atom. protons, neutrons, and electrons oh my!

Rutherford s Gold Foil Experiment. Quantum Theory Max Planck (1910)

The Nature of Energy

Chapter 7: The Quantum-Mechanical Model of the Atom

Where are we? Check-In

Chapter 6 Electronic structure of atoms

Atomic Structure. All matter is composed of atoms. Understanding the structure of atoms is critical to understanding the properties of matter.

Investigation #9 OBSERVATION OF THE PHOTOELECTRIC EFFECT

UNIT 4 NOTES: ATOMIC THEORY & STRUCTURE

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table

In many ways, Dalton's ideas are still useful today. For example, they help us to understand elements, compounds, and molecules.

Chapter 31 Atomic Physics

Introduction. Electromagnetic Waves. Electromagnetic Waves

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

ATOMIC PHYSICS. history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS

Chapter 9: Electrons and the Periodic Table

Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure. of Atoms. 2009, Prentice-Hall, Inc. Electronic Structure.

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

It s a wave. It s a particle It s an electron It s a photon. It s light!

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom?

Chapters 31 Atomic Physics

Atomic Structure ATOMIC STRUCTURE. All matter is composed of atoms.

Accounts for certain objects being colored. Used in medicine (examples?) Allows us to learn about structure of the atom

The Atom and Quantum Mechanics

SAM Teachers Guide Atoms, Excited States, and Photons

The Structure of the Atom

THE NATURE OF THE ATOM. alpha particle source

Particle nature of light & Quantization

physics 7 Atomic and nuclear The arrangement of charge in the atom 7.1 Atomic structure The Rutherford model

Experiment #9. Atomic Emission Spectroscopy

What is the current atomic model?

Memorial to a Scientist

Briefly explain your choice.

The Atom & Unanswered Questions:

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Atomic Spectra. What does this have to do with atomic models?

Chemistry 111 Dr. Kevin Moore

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

Unit 4. Electrons in Atoms

SPARKS CH301. Why are there no blue fireworks? LIGHT, ELECTRONS & QUANTUM MODEL. UNIT 2 Day 2. LM15, 16 & 17 due W 8:45AM

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14

Transcription:

Name Period Date PhET Simulation Exploration Models of the Hydrogen Atom http://phet.colorado.edu/simulations/sims.php?sim=models_of_the_hydrogen_atom Tie to Planck and Quanta Overview One of the most tantalizing puzzles at the beginning of the 1900s for scientists was to describe the makeup of the atom. During your experiment you made indirect measurements of objects using marbles similarly these scientist used light to investigate the atom. In this activity, you will first observe a simulated light spectrum of hydrogen gas. This is the same spectrum that you observed in class. You will then look at spectra predicted by different models of the atom. The models you will test include: John Dalton s Billiard Ball model J.J. Thomson s Plum Pudding model Ernest Rutherford s Classical Solar System model Niels Bohr s Shell model Louis debroglie s Electron Wave model Erwin Schrodinger s Quantum Mechanical model You will need a stopwatch to complete this exercise. The one on your phone will work just fine. Procedure and questions 1. Access http://phet.colorado.edu/en/simulation/hydrogen atom 2. Make sure you are in experiment mode. 3. Click on the Expand box in the top right corner of the simulation so that the simulation completely fills the screen.

4. Turn on the White light gun(red button) and click on the white box if not already done. 5. The white light is shining into a transparent box containing hydrogen gas molecules. a. Explain why, with white light, the light photons passing up through the box have different colors. 6. In the Light Controls, click on Monochromatic. Notice that the incoming photons are now all the same color. A spectrum slider appears that allows you to change the energy of the incoming photons. Move the slider across the spectrum from ultraviolet (UV) to red(780nm). Notice the color of the lamp and the photons moving up the screen. Decide how you can distinguish between UV and visible photons. Record that information below. 7. Check the Show Spectrometer box. 8. Switch the Light Controls back to White light 9. Move the Slow Fast slider all the way over to Slow 10. Watch the photons carefully. Most of the light gun photons pass through the box of hydrogen unaffected. Occasionally a photon is absorbed by something in the? box and a new photon of the same energy (color) leaves the box. a. Describe what is going on in the? box. b. How does this relate to the lab activity you did? 11. Move the Slow Fast slider all the way over to Fast, Reset the Spectrometer, and let the simulation run for 1 minutes. 12. After 1 minutes, click on the Spectrometer camera to take a snapshot of the Experiment. 2

13. Describe what is happening to the spectrum below. Include in your description the colors, estimated wavelengths, and relative numbers of stacked colored balls. These colored balls correspond to photons emitted by the? box. 14. Slide the snapshot off to the right of the screen for later comparison with the models. 15. Close the Show Spectrometer box 16. Remember that John Dalton proposed that an atom was simply a very tiny hard ball. To see this simulated, in the top left corner, switch from Experiment to Predict and highlight the Billiard Ball model. 17. Move the Slow Fast slider all the way over to Slow. a. Describe what is happening below. b. How does this relate to the laboratory activity you did? 18. Below, sketch your idea of what the spectrum will look like for Dalton s model. 19. Move the Slow Fast slider all the way over to Fast, reset the Spectrometer, and let the simulation run for 1 minutes. 20. Click on the Spectrometer camera to take a snapshot of the Billiard Ball. Compare it to the Experiment. Slide these snapshots off to the right for later comparisons. a. Does the spectrum for the Billiard Ball model match that of the experimental (real) hydrogen spectrum? 3

21. Switch to Thomson s Plum Pudding model, close Show Spectrometer, and move the Slow Fast slider all the way over to Slow. (your snapshot will disappear as well. Don t worry, it will come back when you open Show Spectrometer again). a. Describe what is happening within the atom below. b. If the activity you did reacted this way, what would have had to happen during the lab activity? 22. Move the Slow Fast slider all the way over to Fast, reset the Spectrometer, and let the simulation run for 1 minutes. 23. Click on the Spectrometer camera to take a snapshot of the Plum Pudding model. Compare it to the Experiment. Slide the snapshot off to the right for later comparisons. a. Does the spectrum for the Plum Pudding model match that of the real hydrogen spectrum? 24. Just for fun, switch to the Classical Solar System model and change slider to slow. This was Rutherford s model that assumes the atom is like our solar system. a. Describe what happens below. b. Make up a scenario of a laboratory activity that would create this situation. 25. Switch to the Bohr model, click on Show electron energy level in the upper right hand corner, and set the speed to Slow. NOTE: These three next steps are critical to you understanding the Bohr atom model a. Describe what you see in the atom diagram. 4

b. Describe what you see in the energy level diagram c. Describe how the atom diagram and energy level diagrams are related. d. What materials and how could they be used to simulate this in real life? 26. Move the Slow Fast slider all the way over to Fast, reset the Spectrometer, and let the simulation run for 1 minutes. 27. Click on the Spectrometer camera to take a snapshot of the Bohr model. Compare it to the Experiment. Slide the snapshot off to the right for later comparisons. a. How well does the Bohr Shell model spectrum match the experimental (real) hydrogen spectrum? Explain in detail. In the Bohr Shell model, electrons can exist only at certain energy levels (also called shells), not at any energy levels between them. Shells in this energy diagram go from 1 to 6. An increase in energy level (say from 1 6) can only occur if a photon of incoming light is absorbed. A decrease in energy level (say from 2 1) is accompanied by the emission of a photon as the excited electron releases its excess energy. 28. In the Help menu, select Transitions to see all possible transitions. 29. Move the Slow Fast slider all the way over to Slow 30. Set the Light Controls to Monochromatic. 31. Set the monochromatic light source to 122 nm by clicking on the slider box and type in 122. This provides photons of just the right energy to raise (excite) the electron from n=1 to n=2 shell (1 2 transition). Describe the atom diagram and the energy level diagrams. Notice that the electron decays are colored. a. What is the meaning of the colors? 5

32. Set the light source to 103 nm. This provides photons of just the right energy to raise (excite) the electron from n=1 to n=3 shell (1 3 transition). a. Describe the atom diagram and the energy level diagrams. b. How do the transitions differ from 1 2? 33. Just to make sure you understand this model, set the light source to 97 nm. This provides photons of just the right energy to raise (excite) the electron from n=1 to n=4 shell (1 4 transition). a. Describe the atom diagram and the energy level diagrams. b. How do the transitions differ from 1 2 and 1 3? 34. Set the light source to 656 nm. This corresponds to a transition from 2 3. a. What happens? Explain. Luis de Broglie was the first atomic theorist to incorporate the ideas of Planck and Einstein that electrons can be both waves and particles. He developed the de Broglie hypothesis stating that any moving particle or object had an associated wave (wave particle duality). De Broglie thus created a new field in physics called wave mechanics, uniting the physics of light and matter. For this he won the Nobel Prize in Physics in 1929. Among the applications of this work has been the development of electron microscopes. 35. Set the Light Controls back to White. Switch to the de Broglie Electron Wave model. Describe what is the same and different about the de Broglie and Bohr models of the hydrogen atom. 6

36. Move the Slow Fast slider all the way over to Fast, reset the Spectrometer, set Light Controls to White, and let the simulation run for 1 minutes. 37. Click on the Spectrometer camera to take a snapshot of the de Broglie model. Compare it to the Experiment. Slide the snapshot off to the right for later comparison with other models. a. How well does the de Broglie Electron Wave model spectrum match the real hydrogen spectrum? b. Is there anyway to simulate this? if you can think of one please share. 38. In the top left corner of the atomic view, change the radial view to 3 D view. Describe what you see. Erwin Schrödinger began thinking about wave mechanics in 1925. His interest was sparked by a footnote in a paper by Albert Einstein. Like de Broglie, he began to think about explaining the movement of an electron in an atom as a wave. By 1926 he published his work, providing a theoretical basis for the atomic model that Niels Bohr had proposed based on laboratory evidence. The equation at the heart of his publication became known as Schrödinger's wave equation. 39. Switch to the Schrödinger model with White light and speed set to Fast. Describe what you see in the atom diagram and the energy level diagram. Don t worry about all the details. Just capture the big picture ideas. 7

40. Move the Slow Fast slider all the way over to Fast, reset the Spectrometer, set Light Controls to White, and let the simulation run for 1 minutes. 41. Click on the Spectrometer camera to take a snapshot of the Schrödinger model. Compare it to the Experiment. Slide the snapshot off to the right for later comparison with other models. a. How well does the Schrödinger Electron Wave model spectrum match the real hydrogen spectrum? 42. Spread the Experimental snapshot and the model snapshots across the screen. Push the Print Screen key at the top of the keyboard. This puts a snapshot of the screen on the computer s clipboard. Paste it into a Word document and print it out. 8