calculating electromagnetic

Similar documents
5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Field due to a collection of N discrete point charges: r is in the direction from

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Backcalculation Analysis of Pavement-layer Moduli Using Pattern Search Algorithms

MCTDH Approach to Strong Field Dynamics

Lecture 5. Plane Wave Reflection and Transmission

Silence is the only homogeneous sound field in unbounded space

Note: Please use the actual date you accessed this material in your citation.

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

Chapter 3: Vectors and Two-Dimensional Motion

Sound Radiation of Circularly Oscillating Spherical and Cylindrical Shells. John Wang and Hongan Xu Volvo Group 4/30/2013

Reflection and Refraction

Modal Analysis of Periodically Time-varying Linear Rotor Systems using Floquet Theory

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Electromagnetic waves in vacuum.

Mechanics Physics 151

TRANSIENTS. Lecture 5 ELEC-E8409 High Voltage Engineering

Mechanics Physics 151

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Pendulum Dynamics. = Ft tangential direction (2) radial direction (1)

1 Constant Real Rate C 1

PHYS PRACTICE EXAM 2

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Chapter Finite Difference Method for Ordinary Differential Equations

Scattering at an Interface: Oblique Incidence

4/12/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105. Plan for Lecture 34: Review radiating systems

s = rθ Chapter 10: Rotation 10.1: What is physics?

Mechanics Physics 151

8.022 (E&M) Lecture 13. What we learned about magnetism so far

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Chapter 6 Plane Motion of Rigid Bodies

24-2: Electric Potential Energy. 24-1: What is physics

CHAPTER 10: LINEAR DISCRIMINATION

Mobile Communications

Course Outline. 1. MATLAB tutorial 2. Motion of systems that can be idealized as particles

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Rotations.

Density Matrix Description of NMR BCMB/CHEM 8190

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

Physics Exam II Chapters 25-29

Name of the Student:

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

In electrostatics, the electric field E and its sources (charges) are related by Gauss s law: Surface

4/3/2017. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

On the Physical Significance of the Lorentz Transformations in SRT. Department of Physics- University of Aleppo, Aleppo- Syria ABSTRACT

Let s treat the problem of the response of a system to an applied external force. Again,

p E p E d ( ) , we have: [ ] [ ] [ ] Using the law of iterated expectations, we have:

Density Matrix Description of NMR BCMB/CHEM 8190

Time-Dependent Density Functional Theory in Condensed Matter Physics

PHY2053 Summer C 2013 Exam 1 Solutions

SUPPLEMENTARY INFORMATION

When to Treat Prostate Cancer Patients Based on their PSA Dynamics

Physics 11b Lecture #2. Electric Field Electric Flux Gauss s Law

Chapter Fifiteen. Surfaces Revisited

University of California, Davis Date: June xx, PRELIMINARY EXAMINATION FOR THE Ph.D. DEGREE ANSWER KEY

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Solution in semi infinite diffusion couples (error function analysis)

Chapter 6: AC Circuits

Lecture 2 M/G/1 queues. M/G/1-queue

The Feigel Process. The Momentum of Quantum Vacuum. Geert Rikken Vojislav Krstic. CNRS-France. Ariadne call A0/1-4532/03/NL/MV 04/1201

1 Fundamental Solutions to the Wave Equation

EP2200 Queuing theory and teletraffic systems. 3rd lecture Markov chains Birth-death process - Poisson process. Viktoria Fodor KTH EES

Lightning return stroke current reconstruction or vertical and variable channel shape

Superstructure-based Optimization for Design of Optimal PSA Cycles for CO 2 Capture

3/19/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

PHYS 1443 Section 001 Lecture #4

( ) () we define the interaction representation by the unitary transformation () = ()

CptS 570 Machine Learning School of EECS Washington State University. CptS Machine Learning 1

Test 1 phy What mass of a material with density ρ is required to make a hollow spherical shell having inner radius r i and outer radius r o?

May 29, 2018, 8:45~10:15 IB011 Advanced Lecture on Semiconductor Electronics #7

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

COMPLEMENTARY ENERGY METHOD FOR CURVED COMPOSITE BEAMS

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Experiment 09: Angular momentum

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Electromagnetic Theory 1

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions

Block 4 Numerical solution of open channel flow

ELG4179: Wireless Communication Fundamentals S.Loyka. Frequency-Selective and Time-Varying Channels

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

Phys 201A. Homework 5 Solutions

ESS 265 Spring Quarter 2005 Kinetic Simulations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

Reflection and Refraction

Eulerian and Newtonian dynamics of quantum particles

Notes 11 Gauss s Law II

Module 18: Outline. Magnetic Dipoles Magnetic Torques

Relative and Circular Motion

Maximum Likelihood Estimation

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Transcription:

Theoeal mehods fo alulang eleomagne felds fom lghnng dshage ajeev Thoapplll oyal Insue of Tehnology KTH Sweden ajeev.thoapplll@ee.kh.se

Oulne Despon of he poblem Thee dffeen mehods fo feld alulaons - Dpole and monopole mehods fo feld alulaons - Non-unqueness of feld omponens - Felds n ems of appaen hage hd mehod Speal ase of eun soke wh speed of lgh Aknowledgemen: V.A akov and M. Uman Unvesy of Floda Ganesvlle ll

Despon of he poblem ghnng g eun soke speed -x 8 ms Cuen se me < -6 s Dsbued soue fas hangng g n boh spae and me Mehods of fndng exa expessons fo emoe ele and magne felds v τ- τ < v. d d E B θ 3

El f ld f d l Ele felds fom a dpole Sa Z j β Z e j + m Z E - j - E ω β β θ π 3 os y P θ e - j + m jz - E - j - E ω β θ β β θ π β 3 sn 4 y φ e j + m j H - j - E ω β φ β θ π β sn 4 x j β π 4 d adaon Induon o Ae he feld omponens unque? nemedae

Ele felds fom lne soues ne soue seveal dpoles onneed end o end Is possble o defne sa nduon and adaon omponens unquely? How do we defne sa feld? - dsane 3? - The pa of ele feld gven by he gaden of he sala poenal? How do we defne adaon feld? - dsane? - Assoaed wh ae of hange of uen aeleang hages? - ae of hange of veo poenal?

Two mehods fo fndng ele felds Monopole mehod Cuen Densy Cuen densy Chage Densy fom onnuy equaon Veo Sala Poenal Veo Poenal fom oen Poenal ondon Sala a Poenal Ele Feld Dpole mehod Expl use of oen ondon Ele Feld Expl use of onnuy equaon Jefmenko

ubnsen e al. 989 showed ha fo a exendng sep pulse boh gve denal ele felds numeally. Safaenl and Mna [99] showed ha fo exendng sep pulse boh expessons ae analyally equvalen. Thoapplll and akov showed analyally ha fo any dsbuon of uen and hages on a lghnng hannel he dpole and monopole mehods gve he same ele felds

Dpole and monopole mehods fo feld alulaons - Dpole mehod Expl use of oen τ τ ondon o fnd sala A θ τ poenal fom veo 4 poenal φ oen ondon A + d ˆ φ θ Adτ A θ E φ A B A 8

Monopole mehod fo feld o opo e e od o e d alulaons - The monopole mehod mehod The onnuy equaon explly used o fnd ˆ 4 τ τ τ θ d A p y hage densy fom uen * ρ. ons ρ + * 4 4 d Q ρ φ φ A E φ Q 9

Expessons fo sala poenal Dpole mehod 4 3 d d + + τ τ θ φ Monopole mehod * 4 4 + d Q ρ φ o opo e e od 4 4 d Q τ τ Boh ae analyally equvalen

Sample alulaon usng he wo mehods p g lghnng eun soke feld a gound D l h d v Dpole mehod v 3 3sn ˆ V d d E τ τ α + 3sn ˆ d b α sn ˆ d α 3 Sa Monopole mehod 3 * ˆ V d E ρ Induon adaon 3 * ˆ V d d ρ ρ adaon ˆ d

Non-unqueness of feld omponens Numeal example - 5 m 3 EV_C & EV_CE EQ_ C 5 m Ele Fe eld Vm EQ_CE EI_CE E_CE E_C - EI_C 4 6 8 Tme μs

Non-unqueness of feld omponens Numeal example - m 6 EV_C & EV_CE km Ele Feld V Vm 4 EI_C EQ_C EI_CE EQ_CE E_C E_CE 4 6 8 Tme moseond

Non-unqueness of feld omponens Numeal example - 3 m 3. km.5 EV_C & EV_CE le Feld Vm E..5..5 E_C & E_CE EI_C & EI_CE. 4 6 8 Tme μs EQ_C & EQ_CE

Ele feld a gound plane Dpole mehod Boh he gaden of he sala poenal and he me devave of he veo poenal onbue o he adaon feld em. Monopole mehod adaon em s ompleely gven by he me devave of he veo poenal. Tme devave of he veo poenal onbue o he nduon feld em. Eleosa and nduon ems ae gven ompleely by he gaden of he sala poenal No one-o-one oespondene beween feld omponens. Howeve oal feld s he same

Infeenes Indvdual feld omponens - sa nduon and adaon - ae no unque Toal ele feld s unque Dffeenes beween feld omponens ae sgnfan a lose dsanes and neglgble a fa dsanes Cauon has o be exesed n nepeng measuemen esuls o n makng appoxmaons n alulaons 6

elaon beween eaded uen and eaded hage? * ρ?. ons O O ρ Thoapplll akov Uman 997 7

elaon beween wo defnons of eaded hage densy os θ ρ ρ * + os θ oal hage densy a eaded me oal hage densy a eaded me as seen by emoe obseve appaen hage densy 8

elaon beween appaen hage densy and eaded uen ρ d - τ d τ d v+ 9

Felds a gound n ems of appaen g pp hage densy 3 * d E ρ ε π * an 3 d - - ρ ε π an 3 d d v - - ρ ε π * d ρ ε π M d d v ρ ε π 3 d d v ρ ε π

Pulse popagaon on a veal anenna above pefe gound exa fomulaon Wha happens f he eun soke speed s speed of lgh and f he uen avels whou any aenuaon and dspeson? I s poved n Thoapplll e al. ha he exa geneal expesson wh effe of pefe gound nluded edues o E θ θˆ θ sn θ B θ ˆ φ θ sn θ θ ˆ θˆ Cooay and Cooay also deve same esuls sang fom he felds of a movng pon hage.

Pulse popagaon on a veal anenna exa fomulaon - onnued Poynng veos adally-deed deed wh ogn a pon hage Wave mpedane 377 Ω Pon soue Pefe ondung plane

Smlay o he soluon of nfne onal anenna Spheal TEM soluon [Shelkunoff 95] Spheal TEM soluon [Thoapplll e al.] Pon soue Pon soue Pefe ondung plane

Infeenes A sem-nfne ondung we of vanshng adus pependula o a ondung plane all onduos beng pefe suppo spheal TEM f he only soue s a pon soue a he boom of he we. The uen eleased fom he pon soue avels unaenuaed wh he speed of lgh. The Poynng veo and enegy flow s n he adal deon fom he soue a he boom of he anenna. The wave mpedane s he fee-spae mpedane 377 Ω a all dsanes fom he anenna.

SOME EFEENCES FO MOE INFOMATION [] Uman M. A. D. K. Man and E. P. Kde The eleomagne adaon fom a fne anenna Am. J. Phys. 43 33-38 975. [] ubnsen M. and M.A. Uman 989. Mehods fo alulang he eleomagne felds fom a known soue dsbuon: Applaon o lghnng IEEE Tans. Eleomagn. Comp. 3 83-89. 89 [3] ubnsen M. and M. A. Uman On he adaon feld un-on em assoaed wh avellng uen dsonnues n lghnng J. Geophys. es. 95 37-373 99. [4] Thoapplll. V. A. akov and M. A. Uman Dsbuon of hage along he lh lghnng hannel: ll elaon o emoe ele and magne felds fld and do eun-soke models J. Geophys. es. 6987-76 997. [5] Thoapplll. Uman M.A. and akov V.A. Teamen of eadaon effes n alulang he adaed eleomagne felds fom he lghnng dshage J. Geophys. es. 3 93-93 93 998. [6] Thoapplll. and V. A. akov On dffeen appoahes o alulang lghnng ele felds J. Geophys. es. 6 49-45. [7] Thoapplll. and V.A. akov On he ompuaon of ele felds fom a lghnng dshage n me doman IEEE EMC Inenaonal Symposum Moneal Canada Aug. 3-7. [8] Thoapplll. Compuaon of eleomagne felds fom lghnng dshage Chape n he book The ghnng Flash ed V. Cooay The Insuon of Eleal Engnees ondon 3. [9] Thoapplll. M.A. Uman N. Theehay Ele and magne felds fom a semnfne anenna above a ondung plane J. Eleosas 6 9-4.