J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/2 Code No.

Similar documents
CBSE Question Paper. Mathematics Class-XII (set-1)

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/1

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/1/C H$moS> Z. 65/1/3

J{UV 65/1/C. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/C H$moS> Z. 65/1

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/3 Code No.

J{UV 65/2. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series GBM

J{UV 65/3. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SGN

J{UV 65/1/RU. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

J{UV. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series OSR/2 H$moS> Z. 65/2/1 Code No.

CBSE QUESTION PAPER. MATHEMATICS,(1)1d

J{UV (Ho$db ZoÌhrZ narjm{w `m Ho$ {be) MATHEMATICS. g H${bV narjm II SUMMATIVE ASSESSMENT II. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

MT-03 June - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry and Mathematical Programming Paper - MT-03

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

30/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

EMT December - Examination 2017 BAP Examination Elementary Mathematics Paper - EMT

MT-03 December - Examination 2016 B.A. / B.Sc. Pt. I Examination Co-ordinate Geometry & Linear Programming Paper - MT-03

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

J{UV 65/2/1/F. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO/2

BMT June - Examination 2017 BSCP Examination Mathematics J{UV. Paper - BMT. Time : 3 Hours ] [ Max. Marks :- 80

PH-03 December - Examination 2016 B.Sc. Pt. I Examination Electromagnetism. Paper - PH-03. Time : 3 Hours ] [ Max. Marks :- 50

CBSE QUESTION PAPER CLASS-X

MPH-03 June - Examination 2016 M.Sc. (Previous) Physics Examination Quantum Mechanics. Paper - MPH-03. Time : 3 Hours ] [ Max.

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

Downloaded from g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

PH-02 June - Examination 2017 B.Sc. Pt. I Examination Oscillation and Waves. Paper - PH-02. Time : 3 Hours ] [ Max. Marks :- 50

SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõmýv

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

g H${bV narjm II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90

Set 3 30/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

Set 1 30/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

MSCCH - 09 December - Examination 2015 M.Sc. Chemistry (Final) Examination Drugs and Pharmaceuticals Paper - MSCCH - 09


{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

Time allowed: 3 hours Maximum Marks: 90

J{UV 65/1/MT. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100. Series SSO

{Magå V {dúwvj{vh$s VWm gmno{îmh$vm H$m {d{eîq> {gõm V

MSCPH-03 June - Examination 2017 MSC (Previous) Physics Examination Solid State Physics. Paper - MSCPH-03. Time : 3 Hours ] [ Max.

II SUMMATIVE ASSESSMENT II J{UV MATHEMATICS

{ZX}e : h àíz-nì "A', "~' VWm "g' VrZ IÊS>m {d^m{ov h & àë oh$ IÊS> Ho$ {ZX}emZwgma àízm H$m CÎma Xr{OE&

J{UV (311) Time : 3 Hours ] [ Max i mum Marks : 100. Note : (i) This Question Paper consists of two Sections, viz., A and B.

PH-06 June - Examination 2016 BSc Pt. II Examination Optics. àh$m{eh$s. Paper - PH-06. Time : 3 Hours ] [ Max. Marks :- 50

àoau à^md {H$go H$hVo h?

{dúwv Mwpå~H$s {gõm V VWm ñnoñq >moñh$monr

J{UVr ^m {VH$s VWm {Magå V m {ÌH$s

agm`z {dkmz (g ÕmpÝVH$) 56/1/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/2/G {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/2 Code No.

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/3 Code No.

J{UV MATHEMATICS. {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 90 Time allowed : 3 hours Maximum Marks : 90 IÊS> A SECTION A

Time allowed : 3 hours Maximum Marks : 100

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/1/C H$moS> Z. 56/1/1

This ques tion pa per con sists of 32 ques tions [Sec tion A (24) + Sec tion B (4+4)] and 12 printed pages. MATHEMATICS J{UV (311) 2...

Series HRS/2 H$moS> Z. 31/2/2 Code No.

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/MT. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 42/3 (SPL) Code No.

J{UV (311) (narjm H$m {XZ d {XZmßH$) Signature of Invigilators 1... ({ZarjH$m Ho$ hòvmja) Bg ÌZ-nà nwpòvh$m Ho$ A VJ V 23 _w{ V n apple> h ü&

agm`z {dkmz (g ÕmpÝVH$) 56/1/MT {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

12 th Class Mathematics Paper

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

^m {VH$ {dkmz (g ÕmpÝVH$) 55/1/A. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series SSO

MATHEMATICS. Time allowed : 3 hours Maximum Marks : 100

^m {VH$ {dkmz (g ÕmpÝVH$) 55/2/1. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM/2

gm_mý` {ZX}e : àízm Ho$ CÎma {bizo h & (ii) g^r àíz A{Zdm` h & (iii) AmnH$mo ^mj A Am a ^mj ~ Ho$ g^r àízm Ho$ CÎma n WH²$-n WH²$ ^mj Ho$ AmYma na

^m {VH$ {dkmz (g ÕmpÝVH$) PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series OSR H$moS> Z. 55/2/1 Code No.

^m {VH$ {dkmz (g ÕmpÝVH$) 55/3/C. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Downloaded From:

II SUMMATIVE ASSESSMENT II

31/1/2 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

MINIMUM PROGRAMME FOR AISSCE

Series HRS H$moS> Z. 31/3 Code No. g H${bV narjm II SUMMATIVE ASSESSMENT II {dkmz SCIENCE

agm`z {dkmz (g ÕmpÝVH$) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series OSR/C H$moS> Z. 56/1

^m {VH$ {dkmz (g ÕmpÝVH$) 55/2. PHYSICS (Theory) {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70. Series GBM

SAMPLE QUESTION PAPER

31/1/3 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

agm`z {dkmz (g ÕmpÝVH$) 56/1/B {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

agm`z {dkmz (g ÕmpÝVH$) 56/3/RU {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series SSO

C.B.S.E Class XII Delhi & Outside Delhi Sets

g[ Û œ t Æ *W Bg Am ZbmBZ narjm _ {ZåZmZwgma dñvw{zð> àh$ma H$s ~hþ{dh$ën àízmd{b`m hm Jr :

agm`z {dkmz (g ÕmpÝVH$) 56/2/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM/2

31/1/1 narjmwu H$moS> H$mo CÎma-nwpñVH$m Ho$ _win ð> na Adí` {bi & Candidates must write the Code on the title page of the answer-book.

agm`z {dkmz (g ÕmpÝVH$) 56/1 {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 70 Series GBM

{dîm Am a à~ YZ na {díbofumë_h$

Subject Code H Total No. of Questions : 30 (Printed Pages : 7) Maximum Marks : 80

II SUMMATIVE ASSESSMENT II

Downloaded from SET-1

EINSTEIN CLASSES. C B S E XIIth Board PRACTICE ASSIGNMENT

Transcription:

Series OSR/1/C H$moS> Z. 65/1/ Code No. amob Z. Roll No. narjmwu H$moS >H$mo CÎma-nwpñVH$m Ho$ _wi-n ð >na Adí` {bio & Candidates must write the Code on the title page of the answer-book. H $n`m Om±M H$a b {H$ Bg àíz-nì _o _w{ðv n ð> 11 h & àíz-nì _ Xm{hZo hmw H$s Amoa {XE JE H$moS >Zå~a H$mo N>mÌ CÎma-nwpñVH$m Ho$ _wi-n ð> na {bi & H $n`m Om±M H$a b {H$ Bg àíz-nì _ >9 àíz h & H $n`m àíz H$m CÎma {bizm ewê$ H$aZo go nhbo, àíz H$m H«$_m H$ Adí` {bi & Bg àíz-nì H$mo n T>Zo Ho$ {be 15 {_ZQ >H$m g_` {X`m J`m h & àíz-nì H$m {dvau nydm _ 10.15 ~Oo {H$`m OmEJm & 10.15 ~Oo go 10.30 ~Oo VH$ N>mÌ Ho$db àíz-nì H$mo n T> Jo Am a Bg Ad{Y Ho$ Xm amz do CÎma-nwpñVH$m na H$moB CÎma Zht {bi Jo & Please check that this question paper contains 11 printed pages. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate. Please check that this question paper contains 9 questions. Please write down the Serial Number of the question before attempting it. 15 minutes time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period. J{UV MATHEMATICS {ZYm [av g_` : 3 KÊQ>o A{YH$V_ A H$ : 100 Time allowed : 3 hours Maimum Marks : 100 65/1/ 1 P.T.O.

gm_mý` {ZX}e : (i) (ii) (iii) (iv) (v) g^r àíz A{Zdm` h & Bg àíz nì _ 9 àíz h Omo VrZ IÊS>m _ {d^m{ov h : A, ~ VWm g & IÊS> A _ 10 àíz h {OZ_ go àë`oh$ EH$ A H$ H$m h & IÊS> ~ _ 1 àíz h {OZ_ go àë`oh$ Mma A H$ H$m h & IÊS> g _ 7 àíz h {OZ_ go àë`oh$ N> A H$ H$m h & IÊS> A _ g^r àízm Ho$ CÎma EH$ eãx, EH$ dmš` àíz H$s Amdí`H$Vm AZwgma {XE Om gh$vo h & nyu àíz nì _ {dh$ën Zht h & {\$a ^r Mma A H$m dmbo 4 àízm _ VWm N> A H$m dmbo àízm _ AmÝV[aH$ {dh$ën h & Eogo g^r àízm _ go AmnH$mo EH$ hr {dh$ën hb H$aZm h & H $bhw$boq>a Ho$ à`moj H$s AZw_{V Zht h & `{X Amdí`H$ hmo Vmo Amn bkwjuh$s` gma{u`m± _m±j gh$vo h & General Instructions : (i) All questions are compulsory. (ii) The question paper consists of 9 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 1 questions of four marks each and Section C comprises of 7 questions of si marks each. (iii) (iv) (v) All questions in Section A are to be answered in one word, one sentence or as per the eact requirement of the question. There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and questions of si marks each. You have to attempt only one of the alternatives in all such questions. Use of calculators is not permitted. You may ask for logarithmic tables, if required. 65/1/

IÊS> A SECTION A àíz g»`m 1 go 10 VH$ àë`oh$ àíz 1 A H$ H$m h & Question numbers 1 to 10 carry 1 mark each. 1. `{X a VWm b _mìh$ g{xe h, Vmo BZHo$ ~rm H$m H$moU kmv H$s{OE, O~{H$ {X`m J`m h {H$ ( 3 a b ) EH$ _mìh$ g{xe h & If a and b are unit vectors, then find the angle between a and b, given that ( 3 a b ) is a unit vector.. kmv H$s{OE : 1 sin. cos Find : 1 sin. cos 3. gma{uh$ p p 1 p 1 p H$m _mz {b{ie & Write the value of the determinant p p 1 p 1 p. 4. cos Ho$ gmnoj sin H$m AdH$bO {b{ie & Write the derivative of sin w.r.t. cos. 65/1/ 3 P.T.O.

5. _mzm {H$ g_wƒ` A = {0, 1,, 3, 4, 5}, _ R = {(a, b) : g»`m, (a b) H$mo {d^m{ov H$aVr h } Ûmam àxîm gå~ýy EH$ Vwë`Vm gå~ýy h & Vwë`Vm dj [0] H$mo {b{ie & Let R be the equivalence relation in the set A = {0, 1,, 3, 4, 5} given by R = {(a, b) : divides (a b)}. Write the equivalence class [0]. 6. g{xe a = ^i ^j + ^k H$m g{xe b = ^i + ^j + ^k na àjon {b{ie & Write the projection of the vector a = ^i ^j + ^k on the vector b = ^i + ^j + ^k. 7. cos 1 [cos(680)] H$m _w»` _mz {b{ie & Write the principal value of cos 1 [cos(680)]. 8. `{X. y 4 8 w z 6 y 0 6, Vmo ( + y + z) H$m _mz {b{ie & If. y 4 8 w, write the value of ( + y + z). z 6 y 0 6 9. EH$ {~ÝXþ P(a, b, c) H$s -Aj go Xÿar {b{ie & Write the distance of a point P(a, b, c) from -ais. 10. H$m EH$ Amì`yh {b{ie Omo g_{_v VWm {df_-g_{_v Amì`yh XmoZm hmo & Write a matri which is both symmetric and skew-symmetric. 65/1/ 4

IÊS> ~ SECTION B àíz g»`m 11 go VH$ àë`oh$ àíz 4 A H$ H$m h & Question numbers 11 to carry 4 marks each. 11. _mz br{oe {H$ gå~ýy R, àmh $V g»`mam Ho$ g_wƒ` N na {ZåZ ê$n go n[a^m{fv h : R = {(, y), N, y N VWm + y = 4}. gå~ýy R Ho$ {be àm V (domain) d n[aga (range) kmv H$s{OE & `h ^r kmv H$s{OE {H$ Š`m R EH$ Vwë`Vm gå~ýy h `m Zht & Let R be a relation defined on the set of natural numbers N as follows : R = {(, y), N, y N and + y = 4} Find the domain and range of the relation R. Also, find if R is an equivalence relation or not. 1. `{X ( y). y e = a, Vmo {gõ H$s{OE {H$ y dy + = y. If ( y). y e dy = a, prove that y + = y. 13. EH$ d Îm Am a EH$ dj Ho$ n[a_mnm H$m `moj\$b k h, Ohm± k EH$ AMa h & {gõ H$s{OE {H$ CZHo$ joì\$bm H$m `moj\$b Ý`yZV_ h, O~ dj H$s ^wom d Îm H$s {ÌÁ`m H$s XþJwZr h & AdH$b H$m à`moj H$aHo$, (3. 968) 3/ H$m g{þh$q> _mz kmv H$s{OE & The sum of the perimeters of a circle and a square is k, where k is some constant. Prove that the sum of their areas is least when the side of the square is double the radius of the circle. Using differentials, find the approimate value of (3. 968) 3/. 65/1/ 5 P.T.O.

d y 14. `{X = a (cos t + log tan t ), y = a sin t h, Vmo H$s{OE & t d y If = a (cos t + log tan ), y = a sin t, evaluate H$m t = 3 na _mz kmv at t = 3. 15. _mz kmv H$s{OE$ : kmv H$s{OE : Evaluate : / 0 sin ( 3) 3 4 / 0 sin Find : ( 3) 3 4 dy 16. AdH$b g_rh$au ( y) = + y H$m ì`mnh$ hb kmv H$s{OE & dy Find the general solution of the differential equation ( y) = + y. 65/1/ 6

17. `{X y() AdH$b g_rh$au h, Vmo y sin 1 y H$m _mz kmv H$s{OE & dy = cos H$m EH$ hb h Am a y(0) = 1 If y() is a solution of the differential equation and y(0) = 1, then find the value of y. sin 1 y dy = cos 18. EH$ g_vb Ho$ Ûmam {ZX}em jm na H$Q>o A V I S> H«$_e 6, 3, 4 h & _yb {~ÝXþ go g_vb na S>mbo bå~ H$s bå~mb kmv H$s{OE & A plane makes intercepts 6, 3, 4 respectively on the coordinate aes. Find the length of the perpendicular from the origin on it. 19. gma{uh$m Ho$ JwUY_m] Ho$ à`moj go, {ZåZ H$mo {gõ H$s{OE : a a bc b b ca = (a b) (b c) (c a) (bc + ca + ab) c c ab Using properties of determinants, prove the following : a a bc b b ca = (a b) (b c) (c a) (bc + ca + ab) c c ab 0. `{X a = ^i 3 ^j + ^k, b = ^i + ^k, c = ^j ^k VrZ g{xe h, Vmo EH$ g_mýva MVw^ wo H$m joì\$b kmv H$s{OE {OgHo$ {dh$u ( a + b ) VWm ( b + c ) h & `{X VrZ g{xe a, b VWm c g_vbr` h, Vmo {gõ H$s{OE {H$ g{xe a + b, b + c VWm c + a ^r g_vbr` hm Jo & 65/1/ 7 P.T.O.

If a = ^i 3 ^j + ^k, b = ^i + ^k, c = ^j ^k are three vectors, find the area of the parallelogram having diagonals ( a + b ) and ( b + c ). If the three vectors a, b and c are coplanar, prove that the vectors a + b, b + c and c + a are also coplanar. 1. Xem BE {H$ : cot 1 1 sin 1 sin 1 sin 1 sin, 0, 4 Ho$ {be hb H$s{OE : Show that : tan 1 (cos ) = tan 1 ( cosec ) cot 1 1 sin 1 sin 1 sin 1 sin, 0, 4 Solve for : tan 1 (cos ) = tan 1 ( cosec ). EH$ Omo S>o Ho$ ~ƒo h & XmoZm ~ƒm Ho$ b S>Ho$ hmozo H$s àm{`h$vm kmv H$s{OE, O~{H$ `h kmv h {H$ (i) CZ_ go EH$ b S>H$m h, (ii) ~ S>m ~ƒm b S>H$m h & A couple has children. Find the probability that both are boys, if it is known that (i) one of them is a boy, (ii) the older child is a boy. 65/1/ 8

IÊS> g SECTION C àíz g»`m 3 go 9 VH$ àë`oh$ àíz Ho$ 6 A H$ h & Question numbers 3 to 9 carry 6 marks each. 3. {gõ H$s{OE {H$ ( 1, 1) _ f() = + 1 go àxîm \$bz Z Vmo dy _mz h Am a Z hr õmg_mz h & AV dh A Vamb kmv H$s{OE {OZ_ f() (i) {Za Va dy _mz h, (ii) {Za Va õmg_mz h & Prove that the function f defined by f() = + 1 is neither increasing nor decreasing in ( 1, 1). Hence, find the intervals in which f() is (i) strictly increasing, (ii) strictly decreasing. 4. EH$ {gšho$$ H$mo CN>mbZo Ho$ à`moj na {dmma H$s{OE & `{X {gšho$ na {MV àh$q> hmo Vmo {gšho$$ H$mo nwz CN>mb, naývw `{X {gšho$ na nq> àh$q> hmo, Vmo EH$ nmgo H$mo \ $H $ & `{X KQ>Zm H$_-go-H$_ EH$ nq> àh$q> hmozm H$m K{Q>V hmozm {X`m J`m h, Vmo KQ>Zm nmgo na 4 go ~ S>r g»`m àh$q> hmozm H$s gà{v~ Y àm{`h$vm kmv H$s{OE & EH$ ì`{º$ Ho$ ~mao _ kmv h {H$ dh 5 _ go 3 ~ma gë` ~mobvm h & dh EH$ nmgo H$mo CN>mbVm h Am a H$hVm h {H$ 1 Am`m h & dmñvd _ 1 Ho$ hmozo H$s àm{`h$vm kmv H$s{OE & Consider the eperiment of tossing a coin. If the coin shows head, toss it again, but if it shows tail, then throw a die. Find the conditional probability of the event that the die shows a number greater than 4 given that there is at least one tail. A man is known to speak the truth 3 out of 5 times. He throws a die and reports that it is 1. Find the probability that it is actually 1. 5. g_mh$bz {d{y go, {ZåZ dh«$m go {Kao joì H$m joì\$b kmv H$s{OE : y = + 1 + 1, = 3, = 3, y = 0 Using integration, find the area of the region bounded by the curves : y = + 1 + 1, = 3, = 3, y = 0 65/1/ 9 P.T.O.

6. {~ÝXþ (1,, 4) go hmoh$a JwµOaZo dmbo Cg g_vb Ho$ g{xe d H$mVu` g_rh$au kmv H$s{OE Omo {ZåZ aoimam Ho$ g_mýva h r = ^i + ^j 4^k + (^i + 3 ^j + 6^k ) VWm r = ^i 3 ^j + 5^k + (^i + ^j ^k ) Bg àh$ma àmá g_vb go {~ÝXþ (9, 8, 10) H$s Xÿar ^r kmv H$s{OE & Find the vector and cartesian forms of the equation of the plane passing through the point (1,, 4) and parallel to the lines r = ^i + ^j 4^k + (^i + 3 ^j + 6^k ) and r = ^i 3 ^j + 5^k + (^i + ^j ^k ). Also, find the distance of the point (9, 8, 10) from the plane thus obtained. 7. 3 (3 + 1) H$m _mz, `moj\$b H$s gr_m H$s {d{y go kmv H$s{OE & 1 kmv H$s{OE : 1 ( 1) ( ) Evaluate 3 1 Find : (3 + 1) by the method of limit of sums. 1 ( 1) ( ) 65/1/ 10

8. EH$ J hur Xmo àh$ma Ho$ ^moá`m X VWm Y H$mo Bg àh$ma {_bmzm MmhVr h {H$ {_lu _ H$_-go-H$_ {dq>m{_z A H$m KQ>H$ 10 _mìh$, {dq>m{_z B H$m KQ>H$ 1 _mìh$ d {dq>m{_z C H$m KQ>H$ 8 _mìh$ hmo & XmoZm ^moá`m H$s EH$ {H$J«m _mìm _ {dq>m{_z H$s _mìm {ZåZ àh$ma go h : {dq>m{_z A {dq>m{_z B {dq>m{_z C ^moá` X 1 3 ^moá` Y 1 EH$ {H$J«m ^moá` X H$m _yë` < 6, VWm ^moá` Y H$m _yë` < 10 h & dm {N>V Amhma Ho$ {be {_lu H$m Ý`yZV yë` kmv H$s{OE & Cn`w º$ H$mo EH$ a {IH$ àmoj«m_z g_ñ`m ~ZmH$a J«m\$ Ûmam hb H$s{OE & Bg g_ñ`m H$mo Amn {H$g _yë` H$s àm{á go Omo S>Zm Mmh Jo? A housewife wishes to mi together two kinds of food, X and Y, in such a way that the miture contains at least 10 units of vitamin A, 1 units of vitamin B and 8 units of vitamin C. The vitamin contents of one kg of food is given below : Vitamin A Vitamin B Vitamin C Food X 1 3 Food Y 1 One kg of food X costs < 6 and one kg of food Y costs < 10. Formulate the above problem as a linear programming problem and find the least cost of the miture which will produce the diet graphically. What value will you like to attach with this problem? 9. Hw$b < 7,000 H$s YZam{e, VrZ AbJ-AbJ ~MV ~ H$ ImVm _, {OZ_ dm{f H$ ã`mo Xa H«$_e 5%, 8% VWm 8 1 % h, O_m H$s OmVr h & VrZm ImVm go Hw$b {_bmh$a < 550 H$m dm{f H$ ã`mo àmá hmovm h & nhbo Xmo ImVm _, {OZH$s ã`mo Xa 5% VWm 8% h, g_mz am{e O_m H$s OmVr h & Amì`yh {d{y H$s ghm`vm go kmv H$s{OE {H$ BZ VrZm ImVm _ {H$VZr-{H$VZr am{e O_m H$s JB h & A total amount of < 7,000 is deposited in three different savings bank accounts with annual interest rates of 5%, 8% and 8 1 % respectively. The total annual interest from these three accounts is < 550. Equal amounts have been deposited in the 5% and 8% savings accounts. Find the amount deposited in each of the three accounts, with the help of matrices. 65/1/ 11 P.T.O.