Irreversible Processes

Similar documents
Irreversible Processes

Entropy in Macroscopic Systems

Lecture 15. Available Work and Free Energy. Lecture 15, p 1

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Worksheet for Exploration 21.1: Engine Efficiency W Q H U

Physics 202 Homework 5

Chapter 20 The Second Law of Thermodynamics

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Reversible Processes. Furthermore, there must be no friction (i.e. mechanical energy loss) or turbulence i.e. it must be infinitely slow.

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Classical Physics I. PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics. Lecture 36 1

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Version 001 HW 15 Thermodynamics C&J sizemore (21301jtsizemore) 1

The first law of thermodynamics. U = internal energy. Q = amount of heat energy transfer

The laws of Thermodynamics. Work in thermodynamic processes

S = S(f) S(i) dq rev /T. ds = dq rev /T

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

Chapter 19 The First Law of Thermodynamics

Lecture 13 Heat Engines

The goal of thermodynamics is to understand how heat can be converted to work. Not all the heat energy can be converted to mechanical energy

Irreversible Processes

10. Heat devices: heat engines and refrigerators (Hiroshi Matsuoka)

Details on the Carnot Cycle

Phys 22: Homework 10 Solutions W A = 5W B Q IN QIN B QOUT A = 2Q OUT 2 QOUT B QIN B A = 3Q IN = QIN B QOUT. e A = W A e B W B A Q IN.

Distinguish between an isothermal process and an adiabatic process as applied to an ideal gas (2)

5. We use the following relation derived in Sample Problem Entropy change of two blocks coming to equilibrium:

a. 4.2x10-4 m 3 b. 5.5x10-4 m 3 c. 1.2x10-4 m 3 d. 1.4x10-5 m 3 e. 8.8x10-5 m 3

Physics 101: Lecture 28 Thermodynamics II

Last Name: First Name ID

Chapter 20 Entropy and the 2nd Law of Thermodynamics

PHYsics 1150 Homework, Chapter 14, Thermodynamics Ch 14: 1, 17, 26, 27, 37, 44, 46, 52, 58

NOTE: Only CHANGE in internal energy matters

Chapter 12. The Laws of Thermodynamics

Problem: Calculate the entropy change that results from mixing 54.0 g of water at 280 K with 27.0 g of water at 360 K in a vessel whose walls are

Heat Engines and Refrigerators

Survey of Thermodynamic Processes and First and Second Laws

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0)

First Law of Thermodynamics

Chapter 12. The Laws of Thermodynamics. First Law of Thermodynamics

Lecture 9 Examples and Problems

(Heat capacity c is also called specific heat) this means that the heat capacity number c for water is 1 calorie/gram-k.


Adiabatic Expansion (DQ = 0)

Aljalal-Phys March 2004-Ch21-page 1. Chapter 21. Entropy and the Second Law of Thermodynamics

Lecture 10: Heat Engines and Reversible Processes

ln. 1 We substitute V 2 = 2.00V 1 to obtain

How to please the rulers of NPL-213 the geese

Chapter 19. Heat Engines

CHAPTER - 12 THERMODYNAMICS

The need for something else: Entropy

Heat Engines and the Second Law of Thermodynamics

Lecture 13. Heat Engines. Thermodynamic processes and entropy Thermodynamic cycles Extracting work from heat

Physics 101: Lecture 28 Thermodynamics II

Second Law of Thermodynamics

The First Law of Thermodynamics

12 The Laws of Thermodynamics

T s change via collisions at boundary (not mechanical interaction)

Lecture 5. PHYC 161 Fall 2016

Minimum Bias Events at ATLAS

Laws of Thermodynamics

Temperature Thermal Expansion Ideal Gas Law Kinetic Theory Heat Heat Transfer Phase Changes Specific Heat Calorimetry Heat Engines

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Conservation of Energy

UNIVESITY OF SWAZILAND FACl.JLTY OF SCIENCE AND ENGINEERING DEPARTMENT OF PHYSICS

Heat Machines (Chapters 18.6, 19)

Chapter 4 - Second Law of Thermodynamics

More Thermodynamics. Specific Specific Heats of a Gas Equipartition of Energy Reversible and Irreversible Processes

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

A) 2.0 atm B) 2.2 atm C) 2.4 atm D) 2.9 atm E) 3.3 atm

University Physics (Prof. David Flory) Chapt_21 Monday, November 26, 2007 Page 1

AP PHYSICS 2 WHS-CH-15 Thermodynamics Show all your work, equations used, and box in your answers!

Physics 115. Specific heats revisited Entropy. General Physics II. Session 13

Speed Distribution at CONSTANT Temperature is given by the Maxwell Boltzmann Speed Distribution

Physics 150. Thermodynamics. Chapter 15

Solutions. The cabin heat is lost by conduction through the walls. dq/dt = -KA/L ΔT = -A/R ΔT = -200 m 2 / 1.0 m 2 C /W 40 C = W

Chapter 16 Thermodynamics

1. (10) Calorically perfect ideal air at 300 K, 100 kpa, 1000 m/s, is brought to rest isentropically. Determine its final temperature.

Physics 101: Lecture 28 Thermodynamics II

PHY214 Thermal & Kinetic Physics Duration: 2 hours 30 minutes

1. Second Law of Thermodynamics

THE SECOND LAW OF THERMODYNAMICS. Professor Benjamin G. Levine CEM 182H Lecture 5

DAY 28. Summary of Primary Topics Covered. The 2 nd Law of Thermodynamics

Existing Resources: Supplemental/reference for students with thermodynamics background and interests:

Physics 121, April 29, The Second Law of Thermodynamics.

Heat What is heat? Work = 2. PdV 1

4200:225 Equilibrium Thermodynamics

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 32: Heat and Work II. Slide 32-1

Thermodynamics. AP Physics B

UNIVERSITY OF SOUTHAMPTON

THERMODYNAMICS. Zeroth law of thermodynamics. Isotherm

PHY 206 SPRING Problem #1 NAME: SIGNATURE: UM ID: Problem #2. Problem #3. Total. Prof. Massimiliano Galeazzi. Midterm #2 March 8, 2006

Efficiency of the Carnot Cycle at Maximum Power Output. Introduction. Module 3, Lesson 2

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Physics 123 Thermodynamics Review

Process Nature of Process

Class 22 - Second Law of Thermodynamics and Entropy

Lecture 3 Evaluation of Entropy

Name: Discussion Section:

Lecture Outline Chapter 18. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Transcription:

Lecture 15 Heat Engines Review & Examples p p b b Hot reservoir at T h p a a c adiabats Heat leak Heat pump Q h Q c W d V 1 V 2 V Cold reservoir at T c Lecture 15, p 1

Irreversible Processes Entropy-increasing processes are irreversible, because the reverse processes would reduce entropy. Examples: Free-expansion (actually, any particle flow between regions of different density) Heat flow between two systems with different temperatures. Consider the four processes of interest here: Isothermal: Heat flow but no T difference. Reversible Adiabatic: Q = 0. No heat flow at all. Reversible Isochoric & Isobaric: Heat flow between different T s. Irreversible (Assuming that there are only two reservoirs.) p isotherm p adiabat p isochor p isobar V V reversible reversible irreversible irreversible V V Lecture 15, p 2

ACT 1 1) The entropy of a gas increases during a quasi-static isothermal expansion. What happens to the entropy of the environment? a) S env < 0 b) S env = 0 c) S env > 0 2) Consider instead the free expansion (i.e., not quasi-static) of a gas. What happens to the total entropy during this process? a) S tot < 0 b) S tot = 0 c) S tot > 0 gas vacuum Remove the barrier Lecture 15, p 3

1) The entropy of a gas increases during a quasi-static isothermal expansion. What happens to the entropy of the environment? a) S env < 0 b) S env = 0 c) S env > 0 Energy (heat) leaves the environment, so its entropy decreases. In fact, since the environment and gas have the same T, the two entropy changes cancel: S tot = 0. This is a reversible process. 2) Consider instead the free expansion (i.e., not quasi-static) of a gas. What happens to the total entropy during this process? a) S tot < 0 b) S tot = 0 c) S tot > 0 gas vacuum Remove the barrier Lecture 15, p 4

1) The entropy of a gas increases during a quasi-static isothermal expansion. What happens to the entropy of the environment? a) S env < 0 b) S env = 0 c) S env > 0 Energy (heat) leaves the environment, so its entropy decreases. In fact, since the environment and gas have the same T, the two entropy changes cancel: S tot = 0. This is a reversible process. 2) Consider instead the free expansion (i.e., not quasi-static) of a gas. What happens to the total entropy during this process? a) S tot < 0 b) S tot = 0 c) S tot > 0 There is no work or heat flow, so U gas is constant. T is constant. However, because the volume increases, so does the number of available states, and therefore S gas increases. Nothing is happening to the environment. Therefore S tot > 0. This is not a reversible process. Lecture 15, p 5

Review Entropy in Macroscopic Systems Traditional thermodynamic entropy: S = k lnω = kσ We want to calculate S from macrostate information (p, V, T, U, N, etc.) Start with the definition of temperature in terms of entropy: 1 σ 1 S, or kt U T U V, N V, N The entropy changes when T changes: (We re keeping V and N fixed.) ds 2 du C dt CVdT S T T T V = = = If C V is constant: T T 1 T2 dt T 2 = CV = CV ln T T T 1 1 Lecture 15, p 6

ACT 2 Two blocks, each with heat capacity* C = 1 J/K are initially at different temperatures, T 1 = 250 K, T 2 = 350 K. They are then placed into contact, and eventually reach a final temperature of 300 K. (Why?) What can you say about the total change in entropy S tot? a) S tot < 0 b) S tot = 0 c) S tot > 0 T 1 T 2 T f T f T 1 = 250K T 2 = 350K T f = 300 K Two masses each with heat capacity C = 1J/K* *For a solid, C = C V = C p, to good approximation, since V 0. Lecture 15, p 7

Two blocks, each with heat capacity* C = 1 J/K are initially at different temperatures, T 1 = 250 K, T 2 = 350 K. They are then placed into contact, and eventually reach a final temperature of 300 K. (Why?) What can you say about the total change in entropy S tot? a) S tot < 0 b) S tot = 0 c) S tot > 0 T 1 T 2 T f T f T 1 = 250K T 2 = 350K T f = 300 K Two masses each with heat capacity C = 1J/K* This is an irreversible process, so there must be a net increase in entropy. Let s calculate S: T f T f Stot = C ln + C ln T1 T2 300 300 = C ln + C ln 250 350 2 300 = C ln = (0.028) C = 0.028 J/K 250 350 The positive term is slightly bigger than the negative term. *For a solid, C = C V = C p, to good approximation, because V 0. Lecture 15, p 8

Example Process To analyze heat engines, we need to be able to calculate U, T, W, Q, etc. for the processes that they use. How much heat is absorbed by 3 moles of helium when it expands from V i = 10 liters to V f = 20 liters and the temperature is kept at a constant 350 K? What are the initial and final pressures? Lecture 15, p 9

To analyze heat engines, we need to be able to calculate U, T, W, Q, etc. for the processes that they use. How much heat is absorbed by 3 moles of helium when it expands from V i = 10 liters to V f = 20 liters and the temperature is kept at a constant 350 K? What are the initial and final pressures? Q = W by The 1 st law. For an ideal gas, T = 0 U = 0. Positive Q means heat flows into the gas. W by = nrt ln(v f /V i ) = 6048 J p i = nrt/v i = 8.72 10 5 Pa p f = p i /2 = 4.36 10 5 Pa An expanding gas does work. Use the ideal gas law, pv = nrt Where is the heat coming from? In order to keep the gas at a constant temperature, it must be put in contact with a large object (a heat reservoir ) having that temperature. The reservoir supplies heat to the gas (or absorbs heat, if necessary) in order to keep the gas temperature constant. Very often, we will not show the reservoir in the diagram. However, whenever we talk about a system being kept at a specific temperature, a reservoir is implied. Lecture 15, p 10

Example Process (2) Suppose a mole of a diatomic gas, such as O 2, is compressed adiabatically so the final volume is half the initial volume. The starting state is V i = 1 liter, T i = 300 K. What are the final temperature and pressure? Lecture 15, p 11

Suppose a mole of a diatomic gas, such as O 2, is compressed adiabatically so the final volume is half the initial volume. The starting state is V i = 1 liter, T i = 300 K. What are the final temperature and pressure? pv = pv γ i i γ f f 7 / 2 γ = = 1.4 5 / 2 i pf = pi V f T f V nrt V i i = Vi Vf = 6 6.57 10 Pa x pv f f = = 395 K nr γ γ Equation relating p and V for adiabatic process in α-ideal gas γ is the ratio of C p /C V for our diatomic gas (=(α+1)/α). Solve for p f. We need to express it in terms of things we know. Use the ideal gas law to calculate the final temperature. T V = T V α i i α f f 1 α V i Tf = Ti = 395 K V f Alternative: Use the equation relating T and V for an adiabatic process to get the final temperature. α = 5/2 Lecture 15, p 12

Helpful Hints in Dealing with Engines and Fridges Sketch the process (see figures below). Define Q h and Q c and W by (or W on ) as positive and show directions of flow. Determine which Q is given. Write the First Law of Thermodynamics (FLT). We considered three configurations of Carnot cycles: T h Q h T h Q h T h Q h Q leak = Q h W by W on W on T c Q c T c Q c T c Q c Q leak = Q C Engine: We pay for Q h, we want W by. W by = Q h - Q c = εq h Carnot: ε = 1 - T c /T h This has large ε when T h - T c is large. Refrigerator: We pay for W on, we want Q c. Q c = Q h - W on = ΚW on Carnot: Κ = T c /(T h - T c ) Heat pump: We pay for W on, we want Q h. Q h = Q c + W on = ΚW on Carnot: Κ = T h /(T h - T c ) These both have large Κ when T h - T c is small. Lecture 15, p 13

ACT 3: Entropy Change in Heat Pump Consider a Carnot heat pump. 1) What is the sign of the entropy change of the hot reservoir during one cycle? a) S h < 0 b) S h = 0 c) S h > 0 Engine Hot reservoir at T h Q h W 2) What is the sign of the entropy change of the cold reservoir? Q c Cold reservoir at T c a) S c < 0 b) S c = 0 c) S c > 0 3) Compare the magnitudes of the two changes. a) S c < S h b) S c = S h c) S c > S h Lecture 15, p 14

Consider a Carnot heat pump. 1) What is the sign of the entropy change of the hot reservoir during one cycle? a) S h < 0 b) S h = 0 c) S h > 0 Energy (heat) is entering the hot reservoir, so the number of available microstates is increasing. 2) What is the sign of the entropy change of the cold reservoir? Engine Hot reservoir at T h Q h Q c Cold reservoir at T c W a) S c < 0 b) S c = 0 c) S c > 0 3) Compare the magnitudes of the two changes. a) S c < S h b) S c = S h c) S c > S h Lecture 15, p 15

Consider a Carnot heat pump. 1) What is the sign of the entropy change of the hot reservoir during one cycle? a) S h < 0 b) S h = 0 c) S h > 0 Energy (heat) is entering the hot reservoir, so the number of available microstates is increasing. 2) What is the sign of the entropy change of the cold reservoir? Engine Hot reservoir at T h Q h Q c Cold reservoir at T c W a) S c < 0 b) S c = 0 c) S c > 0 Energy (heat) is leaving the cold reservoir. 3) Compare the magnitudes of the two changes. a) S c < S h b) S c = S h c) S c > S h Lecture 15, p 16

Consider a Carnot heat pump. 1) What is the sign of the entropy change of the hot reservoir during one cycle? a) S h < 0 b) S h = 0 c) S h > 0 Energy (heat) is entering the hot reservoir, so the number of available microstates is increasing. 2) What is the sign of the entropy change of the cold reservoir? Engine Hot reservoir at T h Q h Q c Cold reservoir at T c W a) S c < 0 b) S c = 0 c) S c > 0 Energy (heat) is leaving the cold reservoir. 3) Compare the magnitudes of the two changes. a) S c < S h b) S c = S h c) S c > S h It s a reversible cycle, so S tot = 0. Therefore, the two entropy changes must cancel. Remember that the entropy of the engine itself does not change. Note: We ve neglected the heat leak OUT of the hot reservoir. In fact, this must equal Q h (why?). If that heat leaks directly into the cold reservior, this will be irreversible Lecture 15, p 17

Example: Gasoline Engine It s not really a heat engine because the input energy is via fuel injected directly into the engine, not via heat flow. There is no obvious hot reservoir. However, one can still calculate work and energy input for particular gas types. We can treat the gasoline engine as an Otto cycle: p p b p a b a c d Combustion exhaust / intake adiabats V 1 V 2 V b c and d a are nearly adiabatic processes, because the pistons move too quickly for much heat to flow. Lecture 15, p 18

p p b b Calculate the efficiency: c W W Q = C ( T T ) in v b a W = W W by b c d a = U U = C ( T T ) b c b c v b c = U U = C ( T T ) d a d a v d a W = C ( T T ) C ( T T ) by v b c v a d because Q = 0 b c because Q = 0 d a Wby Cv ( Tb Tc ) Cv ( Ta Td ) ( Tc Td ) ε = = = 1 Q C ( T T ) ( T T ) in v b a b a p a a adiabats d V 1 V 2 V Lecture 15, p 19

Write it in terms of volume instead of temperature. We know the volume of the cylinders. ( Tc Td ) ε = 1 ( T T ) T V = T V T = T ( V / V ) α α 1/ α c 2 b 1 c b 1 2 T V = T V T = T ( V / V ) α α 1/ α d 2 a 1 d a 1 2 ( Tc Td ) ( Tb Ta )( V1 / V2 ) = ( T T ) ( T T ) b a b a ε 1/ α 1/ α 1/ α 1 γ 2 1 1 1 b 2 = V1 a V 1 V 2 V 2 = = = V V V V 1 γ p p b p a Compression ratio V 2 /V 1 10 γ = 1.4 (diatomic gas) ε = 60% (in reality about 30%, due to friction etc.) b a c d V 1 V 2 adiabats V Lecture 15, p 20

Efficiency of Otto Cycle 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 5 9 13 17 Conmpression Ratio (V 2 /V 1 ) Monatomic Diatomic Nonlinear' Why not simply use a higher compression ratio? If V 2 big, we need a huge, heavy engine (OK for fixed installations). If V 1 small, the temperature gets too high, causing premature ignition. High compression engines need high octane gas, which has a higher combustion temperature. Lecture 15, p 21

Free Energy Example Suppose we have a liter of water at T = 100 C. What is its free energy, if the environment is T = 20 C? Verify the result by calculating the amount of work we could obtain. Remember that c H2O = 4186 J/kg. K. Lecture 15, p 22

Suppose we have a liter of water at T = 100 C. What is its free energy, if the environment is T = 20 C? Verify the result by calculating the amount of work we could obtain. Remember that c H2O = 4186 J/kg. K. F = U - T S, where T is the temperature of the environment. U = mc T = 1 kg * 4186 J/kg. K * 80 K = 3.349 10 5 J. S = mc ln(t H2O /T env ) = 1011 J/K F = 3.87 10 4 J Remember to measure temperature in Kelvin. Otherwise, you ll get the entropy wrong. Lecture 15, p 23

Suppose we have a liter of water at T = 100 C. What is its free energy, if the environment is T = 20 C? Verify the result by calculating the amount of work we could obtain. Remember that c H2O = 4186 J/kg. K. If we run a Carnot engine, the efficiency at a given water temperature is: ε = 1 T cold /T hot. So, for each small decrease in water temperature, we get this much work out of the engine: dw = εq = -εmc dt Thus, the total work obtained as T drops from 100 C to 20 C is: 293 W = mc 1 373 293 dt T 373 = ( 4186 J/K) T ( 293 K) ln 293 4 = 3.87 10 K 373 293 Lecture 15, p 24