Interfacial Rheology of Gas/Liquid and Liquid/Liquid Interfaces Philipp Erni, Peter Fischer, and Erich J. Windhab

Similar documents
::: Application Report

Interfacial Shear Rheology of Films Formed by Coffee

Different experimental methods in stress and strain control to characterize non-linear behaviour

RHEOLOGICAL CHARACTERIZATION AND MODELING OF AQUEOUS GUAR GUM SOLUTIONS

Contents. Preface XIII. 1 General Introduction 1 References 6

Morphology and Rheology of Immiscible Polymer Blends under Electric Fields

CHAPTER TWO: EXPERIMENTAL AND INSTRUMENTATION TECHNIQUES

Flow in two-dimensions: novel fluid behavior at interfaces

Fundamentals of Interfacial Science Adsorption of surfactants

AN014e. Non-standard geomtries for rheological characterization of complex fluids. A. Franck, TA Instruments Germany

Extended Material Characterization MCR

How to measure the shear viscosity properly?

The Rheology Handbook

Double Wall Ring Geometry to Measure Interfacial Rheological Properties. Aly Franck, TA Instruments, Germany

Rheology of strongly sedimenting magnetite suspensions

The Large Amplitude Oscillatory Strain Response of Aqueous Foam: Strain Localization and Full Stress Fourier Spectrum

Interfacial Rheology of Bacterial Biofilms

Simulation Tests of the Constitutive Equation of a Nonlinear Viscoelastic Fluid

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of Soft Materials. Rheology

Low Molecular Weight Gelator Dextran Composites

Drilling Fluid Thixotropy & Relevance

Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding the rheology of yield stress materials

Rheological Modelling of Polymeric Systems for Foods: Experiments and Simulations

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Middle East Technical University Department of Mechanical Engineering ME 305 Fluid Mechanics I Fall 2018 Section 4 (Dr.

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

Analysis of the magnetic rod interfacial stress rheometer

Viscometry Rheometry. The Range. ::: Intelligence in Rheometry

A Comprehensive Approach to Barite Sag Analysis on Field Muds

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

RHEOLOGY - Vol. I - Interfacial Rheology - Kasper Masschaele, Steven Vandebril, Jan Vermant, Basavaraj Madivala

SANDEEP TYAGI and ANUP K. GHOSH*

Surfactant-Influenced Gas Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities

Interfacial dynamics

J. M. Lopez*,1 and A. Hirsa

Methods of Measuring Rheological Properties of Interfacial Layers (Experimental Methods of 2D Rheology)

Magnetorheological behaviour of magnetic carrageenan gels against shear and compression strains

Emergence of Strong Nonlinear Viscoelastic Response of Semifluorinated Alkane Monolayers

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

Shear rheology of polymer melts

Interactions between falling spheres in the wormlike micellar solutions

2D TIME AVERAGED FLOW MAPPING OF DIE ENTRY IN FLOW OF HIGHLY CONCENTRATED SHEAR-THINNING AND SHEAR-THICKENING SUSPENSIONS

Lecture 7: Rheology and milli microfluidic

In-depth analysis of viscoelastic properties thanks to Microrheology: non-contact rheology

A Technique for Characterizing Complex Polymer Solutions in Extensional Flows. Gavin Braithwaite Stephen Spiegelberg

Extended Material Characterization. ::: Intelligence in Rheometry

Free Surface Effects on Normal Stress Measurements in Cone and Plate Flow. David C. Venerus 1 INTRODUCTION

University Graz / Austria Institut für Chemie Volker Ribitsch

Rheological And Dielectric Characterization of Thermosetting Polymers. Jeffrey Gotro, Ph.D.

ph Dependent Polymer Surfactants for Hindering BSA Adsorption to Oil-Water Interface

Determination and Assessment of the Rheological Properties of Pastes for Screen Printing Ceramics

Rheological Properties

Lecture 4: viscoelasticity and cell mechanics

DYNAMIC AND TRANSIENT TESTING OF ASPHALT BINDER AND PAVING MIX

Measuring structure of low viscosity fluids in oscillation using rheometers with and without a separate torque transducer

Diffusing-wave spectroscopy: From particle sizing to micro-rheology. Prof. Yacine Hemar Food Group School of Chemical Sciences

Modelling the Rheology of Semi-Concentrated Polymeric Composites

Contents. Preface XIII

Jessica Gwyther. Characterisation of Plasticised Nitrocellulose using NMR and Rheology

Influence of electric potentials on friction of sliding contacts lubricated by an ionic liquid

Howard See Young Rheologist Travel Award 2014 Report to the Australian Society of Rheology Overview

Salt-induced Hydrogelation of Functionalised-Dipeptides at high ph

Physica MCR. The modular rheometer series. ::: Intelligence in Rheometry

Application Report. Foam behavior and foam stability of aqueous surfactant solutions

Ablaos Asphalt Binder Large Amplitude Oscillatory Shear

A phenomenological model for shear-thickening in wormlike micelle solutions

Non contact measurement of viscoelastic properties of biopolymers

Rheology, Adhesion, and Debonding of Lightly Cross-linked Polymer Gels

Thermocapillary Migration of a Drop

Probing Shear Thinning Effects on IgG Molecules at the Air-water Interface via. Viscosity and Rheological Measurements.

Response of an elastic Bingham fluid to oscillatory shear

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts

The missing link sensory and rheology study of low fat stirred yoghurt

Characterization of High-Performance Adhesives and Coatings by Photorheometry

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Efficient control of the bulk and surface rheological properties by using C8-C18 fatty acids as co-surfactants

Evaluating Pigment Dispersion Quality through Dynamic Oscillation Analysis John Meadows, Surface Specialties - UCB

Inhomogeneous structure formation and shear-thickening in worm-like micellar solutions

Guideline for Rheological Measurements

Solvent casting flow from slot die

Simeon D. Stoyanov Unilever R&D Vlaardingen, The Netherlands

Pouyan E. Boukany and Shi-Qing Wang* Department of Polymer Science, UniVersity of Akron, Akron, Ohio 44325

Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields

STUDY OF RHEOLOGICAL PROPERTIES OF BITUMINOUS BINDERS IN MIDDLE AND HIGH TEMPERATURES

RHEOLASER LAB MICRORHEOLOGY & END USE PROPERTIES ANALYSIS. MICRORHEOLOGY

EVALUATION OF NONLINEAR DIFFERENTIAL MODELS FOR THE SIMULATION OF POLYMER MELTS

Introduction to Marine Hydrodynamics

Non-Newtonian Behavior of an Insoluble Monolayer: Effects of Inertia

SEISMOLOGY. Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI

Measuring rheological properties using a slotted plate device

Rheological Measurements of Cementitious Suspensions Using a Grooved Measuring Device

Seminar Basics on Rheology Extensional Characterization of Fluids


VISCOELASTIC PROPERTIES OF POLYMERS

Supporting Information for:

Measuring the rheology of thermoplastic polymer melts

Supplementary Information. Text S1:

Chapter 6 Molten State

Investigation of Emulsified Asphalts Properties by DSR to Evaluate their Performance

Transcription:

ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 12, 2004 Interfacial Rheology of Gas/Liquid and Liquid/Liquid Interfaces Philipp Erni, Peter Fischer, and Erich J. Windhab Laboratory of Food Process Engineering, Institute of Food Science and Nutrition, ETH - Swiss Federal Institute of Technology, CH-8092, Zürich, Switzerland ABSTRACT An interfacial shear rheometer for stressand strain-controlled measurements at liquid interfaces is outlined. Experimental data are reported for the surfactant sorbitan tristearate on κ-carrageenan subphases. A setup combining interfacial rheometry with Brewster-angle Microscopy for realtime imaging of the interface is presented. INTRODUCTION Dynamic processes involving deformable fluid interfaces are not only influenced by the equilibrium interfacial properties (such as the thermodynamic interfacial tension) but also depend on the rate and deformation type at which an interface is deformed [1]. The field of interfacial rheology is usually divided into the subareas of shear rheology and dilational rheology. We have recently described an interfacial shear rheometer based on the classical biconical bob design for use in both stress- (torque-) or strain-controlled modes at air/water or oil/water interfaces (see Fig. 1) [2]. By using a rheometer with a low friction electronically commutated (EC) motor in combination with the Direct Strain Oscillation (DSO) method, which allows to control the position of the disk in real-time [3], we are able to perform measurements at sufficiently low torques and deflection angles as necessary in interfacial rheometry. With this design, both stress and straincontrolled experiments can be performed on the same interfacial film. Since the calculation of the interfacial shear viscosity and dynamic moduli is based on a full analysis [2, 4-5] of the flow in the rheometer (including subphase drag effects) it is possible to measure interfacial responses even in systems with a high subphase viscosity. In this contribution, we report on the interfacial shear rheology of sorbitan tristearate spread on κ-carrageenan subphases. The fluid systems studied are (1) pure water/air, (2) κ-carrageenan/air and (3) κ- carrageenan/silicone oil. We show that with the instrumentation and the fluid mechanical analyses used for this work interfacial shear rheometry can be performed in systems with subphase viscosities some orders of magnitude larger than that of water. Figure 1. Schematic of the interfacial shear rheometer

EXPERIMENTAL Materials Sorbitan tristearate and chloroform (p.a.) were purchased from Fluka and used as received. All water used was purified with a Milli-Q Biocel (Millipore) pure water system. Sodium κ-carrageenan was kindly provided by Unilever (Vlaardingen, The Netherlands). The bulk rheological properties of the biopolymer are virtually Newtonian in the range of concentrations, shear rates and stresses studied here [6]. Bulk visocities of the biopolymer solutions used here are 71 mpas (1% w/w) and 143 mpas at 20 C. Silicone oil (AK 50) with a dynamic viscosity of 52 mpas at 20 C was purchased from Wacker Chemie (Munich, Germany) and used as received. The interfacial tensions of the carrageenan subphases against air and against oil were measured at a temperature of 20 C by drop volume tensiometry. For the κ-carrageenan (1.5% w/w) / silicone oil system, the equilibrium interfacial tension was 35.9 mn/m at a drop formation time of 280 s (for the pure water/silicone oil system we have measured an interfacial tension of 36.5 mn/m, therefore the biopolymer shows very small interfacial activity as compared to pure water, probably due to minor impurities). For the κ-carrageenan (1.5% w/w)/air system the equilibrium surface tension was 71.6 mn/m. Interfacial shear experiments All experiments are performed both in either stress or strain-controlled mode using a Physica MCR 300 rheometer (Anton Paar - Physica, Ostfildern, Germany) adapted for interfacial rheometry. A biconical disk is rotated or oscillated at a controlled torque or rate while the cup remains stationary. Experiments were performed in the following modes: Figure 2. Schematic of the RheoBAM setup (1 Laser, 2 Beam expansion lens, 3 Polarizer, 4 Analyzer, 5 CCD camera). (i) steady and oscillatory shear (both strain- and stress-controlled), (ii) creep (stress-controlled), (iii) stress-relaxation (strain-controlled). The instrument and the fluid mechanical background are described elsewhere [2]. Brewster-angle microscope (BAM) BAM is used as an in situ technique for direct visualization of the structure, phase behaviour and orientation effects due to flow processes in interfacial films. The principle of a Brewster-angle microscope as well as the modified RheoBAM setup built in our lab are described in Refs. 6-9. RESULTS AND DISCUSSION We note that with the setup presented here the interfacial response can be extracted from the torque/deflection raw data even at high total disk torques (these may stem both from subphase viscosity or high shear rates). Further, strain amplitude sweep experiments with sorbitan tristearate on either pure water or on the biopolymer subphases show that the linear viscoelastic regime of the interfacial films is limited to very small strains (see Figs. 3 and 4). Interfacial strain sweep experiments The interfacial dynamic moduli G and G measured at a κ-carrageenan/air interface are strain-independent only up to

Figure 3. Strain sweep experiment with sorbitan tristearate (0.35 µg/cm 2 ) at the κ- carrageenan/air interface. (Oscillation frequency 1 s -1, Temperature 20 C). Labels a c correspond to the images shown in Fig. 4. deformations as small as γ = 3%. In Fig. 4 the morphology of the surface during such an experiment as monitored with BAM is shown. At subcritical deformations no changes in morphology are observed, but as soon as the critical deformation of around γ=3.5% is exceeded, a sudden fracture in the film occurs, resulting in a virtually unsheared portion of the surface with an intact film (left-hand side of Fig. 4c) and a ruptured portion of film fragments moving in a reduced shear gap (right-hand side of Fig. 4c). Creep recovery tests Creep recovery experiments were performed both on an uncovered surface of κ-carrageenan (1.5% w/w) and on surfaces covered with sorbitan tristearate (see Fig. 5). Note the scale of the deformation axis in both cases: while for the clean surface the disk of the rheometer would visibly rotate several times, only minor deformations γ <0.4 % and the typical viscoelastic responses were observed for the Figure 4. BAM images recorded during the amplitude sweep experiment shown in Fig. 4. (a) taken in the linear viscoelastic regime, (b) fracture of the film at a strain of γ = 3.5 % and (c) inhomogeneous flow pattern with an intact film on the left-hand side and debris of the ruptured film flowing in the reduced shear gap on the right-hand side. surfactant-covered surfaces, including a phase of steady flow ( γ/ t = constant) and partial relaxation of the strain after the strain pulse has decayed back to zero. Performing a stress pulse as shown in Fig. 5 on a clean water surface will result in a completely different flow situation where deformations of much higher magnitudes will be measured. The disk of the rheometer would visibly

rotate several times if subjected to the same stress pulse on the surface of pure water, whereas the viscoelastic film in Fig. 5b is only slightly deformed. Stress relaxation tests A stress relaxation experiment performed with sorbitan tristearate at the interface between κ-carrageenan and silicone oil is shown in Fig. 6. The response of the interfacial relaxation modulus G(t) = τ(t)/ γ + to a step function of the strain to γ + = 1.2 % at time t = 0 was measured. DISCUSSION It was shown that the rheological response of interfacial films may be obtained in surprisingly good quality even if subphases with viscosities higher than water are used. It should be noted that even with the analysis implemented here only the steady shear/oscillation experiments are based on a fully developed interfacial shear flow. For example, in the creep and relaxation experiments the calculated stresses are transient and should therefore be treated as effective interfacial stresses. While this is also true for similar tests in 3D rheology, the subphase flow adds a further degree of complexity to this probem. The steady shear flow and oscillatory flow problems have been solved [1-2, 4-6], while methods to calculate the interfacial and bulk flow fields under startup and relaxation conditions are still to be developed. Figure 5. Creep tests strain response to a stress pulse (a) Clean surface of a κ- carrageenan solution (1% w/w) (b) same subphase covered with sorbitan tristearate (0.35 µg/cm 2 ) subjected to different interfacial shear stresses. ACKNOWLEDGEMENTS We thank Jörg Läuger, Victor Kusnezov and Patrick Heyer at Anton Paar Physica for their support. The Food Process Engineering workshop at ETH was very helpful during the construction of the RheoBAM. This work was supported by the Swiss National Science Foundation (SNF project no. 2100-063976). Figure 6. Interfacial stress relaxation from a strain step (γ + = 0.8 % at t = 0 s). Sorbitan tristearate (Γ m = 0.35 µg/cm2, interface between 1.5 % (w/w) κ-carrageenan and silicone oil). A single mode Maxwell model is shown for comparison.

REFERENCES 1. Edwards, D.A., Brenner, H., and Wasan, D.T. (1991), "Interfacial Transport Processes and Rheology", Butterworth- Heinemann, Stonheam, MA. 2. Erni, P., Fischer, P., Windhab, E.J., Kusnezov, V., Stettin, H. and Läuger, J. (2003) "Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces", Rev. Sci. Instrum., 74, 4916-4924. Air-Water Interface by Brewster Angle Microscopy, J. Phys. Chem 95, 4590-4592. 9. Fischer, P., Brooks, C. F., Fuller, G. G., Ritcey, A. M., Xiao, Y., and Rahem, T. (2000)., Phase Behavior and Flow Properties of Hairy Rod Monolayers, Langmuir, 16, 726-734 3. Läuger, J., Wollny, K., and Huck, S. (2002), "Direct Strain Oscillation: A New Oscillatory Method Enabling Measurements at Very Small Shear Stresses and Strains", Rheol. Acta, 41, 356-361. 4. Oh, S.G. and Slattery, J.C. (1978), "Disk and Biconical Interfacial Viscometers", J. Colloid Interf. Sci., 67, 516-525. 5. Lee, H.O., Jiang, T.S. and Avramidis, K.S. (1991), "Measurements of Interfacial Shear Viscoelasticity with an Oscillatory Torsional Viscometer", J. Colloid Interf. Sci., 146, 90-122. 6. Erni, P., Fischer, P., Heyer, P., Windhab, E.J., Kusnezov, V., and Läuger, J. (2003) "Rheology of Gas/Liquid and Liquid/Liquid Interfaces with Aqueous and Biopolymer Subphases", Progr. Colloid Polym. Sci. (accepted, in press). 7. Hénon, S., and Meunier, J. (1991), Microscope at the Brewster Angle: Direct Observation of First-Order Phase Transitions in Monolayers, Rev. Sci. Instrum. 62(4), 936-939. 8. Hönig, D., and Möbius, D. (1991), Direct Visualization of Monolayers at the